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Abstract

Sport climbing became a more attractive sport to the broad mass over the last decades. An increasing amount of injuries
are the consequences. Inattentiveness and untrained belayer are some of the natural causes. In order to improve their
experience, we developed an intelligent belaying system monitoring the belayer during his task to secure the climber
throughout his ascent. It is supposed to recognize a climbers’ fall if the belayer fails. We specifically designed Machine
Learning algorithms in combination with a multi-sensor system for this task. The system is divided in two separate
sub-systems, which communicate over wireless LAN protocols in order to keep them synchronized. One of the two sub-
systems is integrated into a belay device. It records the movement behavior of the device and the rope running through it.
In order to generate label data, the second sub-system was attached onto the climber. Based on the information from the
belay device alone, we were able to identify a fall with a certainty of 86.21%.

1 Introduction

Sport climbing has risen as a popular sport with an
increasing community. Inevitably, the amount of injuries
grew as well, as a study by Nelson et al. [1] revealed. They
surveyed rock climbing injuries which had to be treated in
emergency departments in the united states and identified
an increase of treatments by 63% between the years 1990
and 2007. Another study by Schöffl et al. [2] focused
on the causes of injuries that occured in a sport climbing
gym in Germany over the years 2007 and 2011. Most of
their recorded injuries whilst lead or top rope climbing
did arise due to a mistake whilst belaying. Within this
work we address this deficit in the sport climbing safety
control. Therefore, we developed a new multi-sensor
system, including an Inertial Measurement Unit (IMU) and
Hall-Sensors. They were integrated into an existing belay
device. Whereas the IMU is supposed to keep track of
the belay devices’ movement behaviour, the Hall-Sensors
track the rope running through the device. Such a system
would benefit as a monitoring system for supporting and
training the belayer in critical situations.
Experiments with monitoring systems in sports climbing
were already developed and examined in a couple of
studies. In contrast to our approach, they rely on systems
worn by the climber [3], [4], [5], [6]. Even a study exists
on a system worn by the belayer to supervise the severity
of a climbers fall [7]. Though, all of those previous studies
require an external setup which has to be attached to either
the belayer and climber or only the climber to gather the
relevant data. Not only is our approach the first one that
integrated a monitoring system into a belay device, but it is
also the first one that could be used without an additional
equipment for climbing.
The idea of this study was to distinguish a fall from other
climb specific activities based on the pre-mentioned setup.
The first part focuses on the analysis of the recorded data
with regard to class separability. We then developed three

algorithms to achieve the separation of the two classes.
The first one is based on a threshold approach, the second
on the Random Forest algorithm. The third method is a
combination of the first two approaches.

2 Hardware System

This section provides an overview of the utilized hardware,
their configuration and interaction between them. Two
hardware systems were developed, one integrated into the
belay device and the other was attached to the climber.

2.1 Electronical Hardware for the Belayer
The sensors were integrated into a consisting belay device
Eddy from the Edelrid GmbH & Co. KG. This includes
three Hall-Sensors interacting with multiple magnets and
an Inertial Measurement Unit (IMU), cp. Figure 1 (a).
We used three Infineon XENSIVTM magnetic Hall switch
TLE4945L sensors [8] which interact with six magnets
with varying pole orientations. The magnets were placed
into a wheel, which is mechanically pressed against the
rope within the belay device. An MPU-9250 from the
Infineon company [9] was used to record the movement
behavior of the belay device.
Both sensor types were connected to a pre-developed
microcontroller by the Adafruit Industries LLC company
which comes with a built-in SD-card socket including
read/write functionality, cp. Figure 1 (b). That allows
to store the raw sensor information on the SD card.
Additionally, an ESP8266 from the Espressif Systems
company guarantees a wireless communication between
climber, belayer and a control software.

2.2 Electronical Hardware for the Climber
This sub-system is supposed to record the required label
information for the classification task. Figure 2 shows the
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Figure 1 Sketch of the electronical components attached
on belayer and belay device. (a): The sensors on the belay
device are connected to a circuit board attached to the
harness of the belayer. They consist of an IMU and three
Hall-Sensors, coming with magnets integrated into a
wheel, which is pushed against the rope within the belay
device. (b): Visualization of the communication protocols
between the sensors and the microcontroller. The IMU
send the information via I2C to the microcontroller,
whereas the ESP module communicated over UART. The
Hall-Sensors were sending their state to a digitial pin (dI).

electronical parts attached to the climber. They are fixed
on the harness of the climber in climb situations or on top
of the sandbag in fall scenarios, cp. Figure 3. It comprises
the same type of microcontroller, IMU and wifi module as
within the belayer setup.
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Figure 2 Sketch of the electronical components attached
on the harness of the climber. They consist of a circuit
board including a microcontroller, SD card socket, wifi
module and an IMU.

2.3 Wireless Synchronization
The information from the device on the climber contains
the label information for the fall classification task.
Therefore, the two devices had to record the sensor
information synchronous. In order to comply with this
requirement, we sent a signal via wifi broadcast message

to both devices. The synchronisation rate of 1/minute
guaranteed a time drift of less than one millisecond
throughout the recorded sequence.

3 Measuring Setup

This section provides an overview of the measuring setup
and the recording configurations. As we are interested in
identifying falls in climb scenarios, we established two
independent setups. The isolated fall sequences record
climbing falls. The climb sequences provide information
about climb specific movements and activities without any
falls. Figure 3 displays the two configurations.

(a) (b)

Figure 3 Sketch of the measuring setups for fall (a) and
climb (b) scenarios. In case of the fall scenario a sandbag
served as a substitute for the climber.

3.1 Isolated Fall Sequences
We recorded isolated fall sequences by using a sandbag
as a substitude for the climber, cp. Figure 3 (a). This
allowed us to record falls with a fall distance of over three
to four meter without endangering the climber. Figure 4
displays such a conducted fall in terms of the recorded
signals. This allows us to analyze the falls by identifying
the starting time of the free fall, the fall into rope or the
rope running through the device, and also to identify the
movement behavior of the belay device itself.
Overall, we recorded 161 falls with varying configurations.
Table 1 summarizes the falls with respect to the two
variables slack and fall potential. Slack refers to the
amount of loose rope handed out by the belayer, whereas
fall potential defines the height difference between the
rope attachment point on the climber and the last clipped
quickdraw, cp. Figure 5. Both configurations share
the same fundamentals by affecting the free fall time of
the climber. Though, slack is additionally influenced
by the friction caused by the rope running through the
quickdraws. On the other side, the impact of the climbers’
fall into the rope appears higher if the fall potential
increases.
The amount of slack and fall potential differ in some
configurations. For example, in Setup 2, the amount of
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Figure 4 Fall example from a sandbag drop with one
meter of slack. The graphic displays the measured
distance of rope running through the belay device (green),
the resulting acceleration measured on the climber (red)
and belay device (blue). It also depicts the timestamps of
releasing the sandbag (violet), the occurring impact force
(turquoise), the end of the free fall (grey) and the starting
point of the rope running through the device (orange).

slack was 0.35m. This was the natural amount of slack
the belayer was able to pull out, and, hence serves as
a comparable reference against the climb scenarios, cp.
Section Climb Sequences. Likewise, the same is applicable
to the slack of 0.7m, where the belayer pulled out rope
twice.
The rest of the configuration values are 0.25m, 0.5m and
1.0m. As we recorded multiple belayer, those values serve
as a normed reference in-between those belayer.
Finally, we varied the handling of the belay device, to
analyze its movement behavior in three different handling
situations: holding the device, the carabiner or nothing.

Table 1 Setup of the recorded fall configurations.
Variations in fall potential and slack were chosen to depict
the reality as close as possible.

Setup
Number

Belay
Device

Handling

Number
of

Recordings

Slack
[m]

Fall
Potential

[m]

1 Device 42 0.00 0.00
2 Device 3 0.35 0.00
3 Device 10 0.50 0.00
4 Device 4 0.70 0.00
5 Device 10 1.00 0.00
6 Device 13 0.00 0.25
7 Device 19 0.00 0.50
8 Device 7 0.00 1.00
9 Device 5 0.35 0.25
10 Carabiner 5 0.00 0.00
11 Carabiner 5 0.70 0.00
12 Carabiner 5 0.00 1.00
13 Carabiner 5 0.70 1.00
14 Nothing 12 0.00 0.00
15 Nothing 3 0.35 0.00
16 Nothing 1 0.50 0.00
17 Nothing 3 0.00 0.25
18 Nothing 6 0.00 0.50
19 Nothing 3 0.00 1.00

Slack

Fall-Potential

Quickdraw

Figure 5 Configurations for the fall setup. Fall
configuration describes the height difference of the
climber to the last clipped quickdraw. Slack refers to the
amount of loose rope handed out by the belayer. It can be
described as the amount of rope which is required to pull
in until the rope is straightened between the belay device
and the first clipped quickdraw without considering the
strain of the rope.

3.2 Climb Sequences
The second setup aims to record climb sequences that
occur in real climb scenarios. Overall, we conducted 45
recordings based on 6 different configurations, as seen in
Table 2.
Within the fall configurations, it was possible to adjust
the slack precisely. This is not feasible for the climb
sequences, as our aim was to create a natural climbing
environment. So, we only differentiated between slack and
no slack, referred to as "Yes" and "No" respectively. A
second configuration parameter is the position from which
the climber clips into the next quickdraw. We examined
two options: one, where the quickdraw is one arm length
away from the climber (Long Arm) and one, where the
quickdraw is located at the height of the chest of the
climber (Chest Height). The first configuration requires
the belayer to pull more rope through the device than the
second one.
Thirdly, the belayer was allowed to either belay actively or
passively. In the active situation, the belayer moves in rope
direction whilst the climber is demanding for rope. The
passive belaying activity requires the belayer to stand still
in this situation.

Table 2 Setup of the recorded climb configurations.
Slack, clipping position and belayer activity were varied.

Setup
Number

Number of
Recordings

Belayer
Activity

Clipping
Position

Slack

1 7 Passive Chest Height No
2 8 Active Chest Height No
3 8 Passive Long Arm No
4 7 Active Long Arm No
5 7 Passive Chest Height Yes
6 8 Passive Long Arm Yes
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4 Signal Processing

This section provides an overview over the individual
channels and explains the methods to pre-process and
analyse the recorded signals.

4.1 Inertial Measurement Unit
From the 9 axis Motion Processing Unit, we recorded
the information from the three axis accelerometer and
three axis gyroscope. The acceleration signal was filtered
using a low pass butterworth filter of fourth order with
a cutoff frequency of 30Hz. In combination with the
information obtained by the gyroscope we used the
Madgwick orientation filter [10] with a divergence rate of
β = 0.8 to rotate the local coordinate frame of the IMU to
align with earth’s frame. This way, we are able to subtract
the gravitational influence in the following way:

a⃗ = a⃗r − (0,0,g)T

, with g as the gravitational constant and a⃗r the acceleration
reading from the sensor, rotated into the earth frame.

4.2 Hall-Sensor
The three Hall-Sensors allowed us to keep track of rope
running through the belay device. They are placed in a
40 ◦ angle in between them. As the sensors have to interact
with magnets to keep track of the rope, we integrated six
of them in a wheel, which was pressed against the rope
itself, cp. Figure 1. The magnets are placed 60◦ apart
with changing poles. As the radius of the wheel is around
rWheel = 0.012m, the sensitivity of the measurable rope
distance is around rRope,Sensitivity ≈ 4.1mm.

4.3 Sequencing
In addition to pre-processing the raw information from the
sensors, we had to cut the recorded trials to remove the
non-informative time ranges (the time right before the fall
was initiated and the time before the climber started to
climb the wall).
For cutting the fall trials, we identified the moment of
release based on the signals from the climber. They mark
the starting point of the time sequence. The impact force
was defined as end point as further time steps do no account
as a fall.
The initial time the rope was pulled through the device
marks the starting point for the climb trials. Lowering
was included into the sequences and around the time the
climber reaches the floor, the recording stopped.

4.4 Hardware Requirements
The fall of a climber is a time critical event. According to
the Norm EN892 a rope has to withstand a certain amount
of falls with a fall factor of 1.77. This would result in a fall
with a fall potential of 2.3m and an additional amount of
slack of about 0.3m. Based on the properties of the wheel
and magnets interacting with the Hall-Sensor, such a fall
would require to trigger each Hall-Sensor every 440.88 µs.

Our Interrupt Service Routines (ISR) require at max 90 µs
of time, hence never facing the issue of missing out an
event.
The average time of our recorded falls took around 1.2s
until the impact force occured. So, we recorded and stored
the data with a frequency of about 220Hz.

5 Data Analysis

This section provides a brief summary about the sample
and feature space, the analysis of the data and the
algorithms applied to handle the classification task.

5.1 Preparation of the Sample and Feature
Space

The feature space is built around the sensor components
described in Section 2. From those, we extracted seven
features: the three axes from the accelerometer, the three
axes from the gyroscope and the velocity information of
the rope running through the belay device. We chose the
velocity, as the distance of the rope would unambigously
lead to an easy identification of a fall, as climb sequences
lead to traveled rope distances of above 20m. A fall
sequence on the other hand results in measured distances
of less than 5m. Additionally, the climbed distance
feature contains a time dependency. Meaning, the higher
the climber climbs a climbing route, the further the
distance measured. The velocity is able to compensate this
dependency, as it is defined as the gradient of the distance
with respect to the time.
The velocity was calculated first by applying an average
filter with a filter size of 15 samples on the distance feature.
After the filter was applied, we estimated the velocity v
based on the forward difference approximation:

v(t +∆t) =
srope(t +∆t)− srope(t)

∆t

The raw information from each of the seven features was
then transformed into their respective SI-unit and then
standardized to equalize their means and establish a unit-
variance.
The temporal information was neglected in this study. So,
each sample represents one time step.

5.2 Class Separability
In Figure 6, a pairwise feature plot, where each axis is
representing one of the seven features, is depicted. The
utilized abbreviations in this graph are A and G for the
acceleration and angular velocity. The second letter X, Y
and Z represents the direction, in which the kinematics
were measured. Due to the high amount of data and
scattering in between them, we applied a 2D hexagon
binning plot with at least 150 samples per hexagon. This
allows us to analyze and compare the cluster center among
the two classes. We can see a high overlap between the two
centers. Therefore, they are difficult to be distinguished in
the 2D feature space.
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Figure 6 Pairwise feature plot of the applied features.
Each graph in the upper and lower triangular matrix is
generated as 2D hexagon binning plot where at least 150
samples are required for a hexagon to be visualized. The
more intense the color, the more samples are within this
specific hexagon. Diagonal entries represent a histogram
of the respective feature.

Instead of the visual inspection for the data separability,
we can use a density approach to identify the amount of
overlap between the two classes, even in the full feature
space. Therefore, we used a Gaussian Mixture Model with
one component to identify the threshold of the density,
where 99% of the climb samples lie. Within this area, we
could identify 57.86% of the fall samples to be within this
area.

6 Classifier

We were analyzing three approaches to classify a climbers
fall. The first one utilizes a threshold on the velocity
of the rope running through the device. We used a
threshold of 4 m

s , similar to the REVO belay device from
the Wild Country Ltd company (Derbyshire, SK17 8PY,
United Kingdom), which is capable of blocking the rope
movement at the same speed. Though, the blocking of
the rope is enabled by a mechanical mechanism. In the
following, we call this method "threshold method".
The second approach is based on the Random Forest
method [11]. We set the number of trees to 200 and allowed
a maximum depth of 4 per tree. For the split criteria, we
relied on the Gini impurity.
Finally, the last evaluated approach is a combination
of both methods. We used the velocity information
to pre-process the input data even further by neglecting
samples with a velocity of zero. Random Forest is,
again, the classifier to handle the differentiation task. The
configuration is identical to the aforesaid Random Forest

approach.

7 Results

This section provides the results from the study to classify
a climbers fall based on kinematic sensor information
generated with the belay device. The three classification
approaches will be analysed separately.

7.1 Threshold Method
The two sample distributions of the individual classes are
visualized in Figure 7. Fall samples (left box-plot) show
a higher dispersion with a standard deviation of around
2.55 m

s , compared to the climb samples (middle box-plot)
with a standard deviation of 0.37 m

s . Fall potential and
slack are the cause for reaching high velocity values, and,
hence increasing the dispersion. We recorded velocities
of up to 11.92 m

s . Even the third quartile lies above the
threshold with a value of 4.16 m

s . Compared to that, climb
samples reach a maximum velocity of 4.32 m

s , which also
exceeds the threshold. Though, the third quartile is equal to
zero, showing that most samples were not recorded while
handing out rope. It is also the only class registering
negative velocities. They occur when the belayer is pulling
rope in.
The right box-plot (Max-Velocity Falls) displays the
maximum reached velocities within each fall sequence.
With a minimum value of 4.54 m

s , which is above the
threshold, it shows that at least once per fall sequence a
sample is correctly classified.
The full classification result is displayed in the confusion
matrix in Figure 8 (a). With a specificity of about
99.9983%, only 24 samples were falsely classified as falls.
Though, the sensitivity is dropping to 27.17%. Overall, we
reached a geometric mean of 52.11%.
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Figure 7 Class individual distributions (Falls and
Climbs) of the velocities from the rope running through
the belay device. The green dotted line represents the
threshold of 4 m

s . The maximum velocities per fall
sequence is visualized as well (Max-Velocity Falls). It
displays that at least one sample within each fall sequence
is being classified correctly as a fall.

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach456



(b)

(c)

Figure 8 Results of the classification with the threshold
(a), the Random Forest (b) and the Combined method of
the two approaches (c). The threshold reaches a geometric
mean of 52.11% with 24 false positives samples and
a sensitivity of 27.17%. The Random Forest approach
reaches a sensitivity of 44.57% and 1285 false positives
which leads to a geometric mean of 66.73%. Sensitivity
and geometric mean improved with the Combined method
by reaching values of 74.48% and 86.21% respectively.
Only the specificity dropped to 99.79%.

7.2 Random Forest Method
The tree based classification algorithm is able to improve
the results with respect to the geometric mean and
sensitivity, cp. Figure 8 (b). We receive a sensitivity of
44.57% and a geometric mean of 66.73%. The benefit
of improvement drops the specificity by 0.08% which
accounts for more than 1200 additional false positives.

7.3 Combined Method
The velocity also serves as an indicator of how often the
rope is being handed out. In a climb scenario, a belayer
hands out rope in 29.61% of the time, whereas in our
recorded falls 52.68% of the time rope was registered
running through the device. This bias might influence the
outcome of the prediction results. By neglecting samples
with a velocity of zero in both classes, we wanted to
decrease the initial bias. It lead to an improvement of
the sensitivity to 74.48% with a decreasing specificity to

99.79%. As the amount of overall samples declined, the
false positives decreased as well to 792, despite a lower
specificity.

8 Discussion

The recent popularity in sport climbing lead to an increase
in injury reports. Therefore, we developed a monitoring
system and analyzed the falls of a climber. It consists of
two sub-systems, one, integrated into a belay device, and
the other one generating the required label information
in fall situations, which is attached to a climber or a
substitute.

Even with the more simple threshold method, we were
able to identify at least one sample per trial correctly as
a fall. Though, we did not analyze the time until a fall
would be identified as such. This is a critical variable and
requires to be as fast as possible to decrease the covered
height of the fall. The random forest approach, especially
in combination with the velocity information improves the
sensitivity which might improve the time of the catch. It is
still an ongoing investigation and needs to be analyzed in
more detail.

The specificity seems to be very high at 99.9983% in the
case of the threshold method, though, no climber would
rely on a belay device which blocks rope movement too
often in climb typical situations like handing out rope. So,
further improvements have to be done by reducing the
false positives, especially, when relying on machine or
deep learning methods.

Machine learning methods prefer the majority class in
a skewed dataset. As our dataset is affected by a class
imbalance, we can see such a preference towards the climb
class when using the random forest approach. Though,
balancing out the classes within the dataset could lead to
a deterioration of the majority class. So, it depends on
the question that needs to be clarified to what extend the
skewed dataset is to be balanced.

In this study we neglected the temporal information. So,
each sample represented one time step. In case of a fall, we
would assume the device to be pulled upwards, before any
rope is running through the device, which is not supposed
to be the case whilst handing out rope. This information
could be beneficial for the classification task and would
require to add temporal information.

9 Conclusion and Outlook

This study showed the possibility for a monitoring system
in sport climbing, which is integrated directly into a
belay device. We recorded the movement behavior of
the device with an IMU and the amount of rope running
through it with Hall-Sensors. With the help of wireless
communication between the components in the belay
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device and one attached to the climber, we were able to
generate a data set with label information for predicting
falls in sport climbing. Three classification approaches
were analyzed. The first one is based on a threshold, the
second on the Random Forest method and the third is a
combination of both. The threshold approach is able to
achieve a very high specificity with only 24 false positive
samples. With a sensitivity of less than 30%, it is still able
to identify at least one sample within each trial as a fall.

Best results, in the sense of geometric mean, were
achieved by combining the velocity information with the
random forest approach. We reached a value of 86.21%.
In this scenario, the specificity was dropping to 99.79%
with 792 false positives. The sensitivity was increasing by
almost 50% compared to the threshold variant.

The dataset shows a class imbalance, where 5.05% of
the samples belong to the fall trials. Due to the nature
of the approach, the threshold method is not affected
by this imbalance. Though, even the random forest
method was able to handle it by a certain degree. One
explanation arises through the different type of sequences
during a climb trial, as only 29.61% of all climb samples
hold information about rope movement. Future work
could improve the classification results by including this
information and separating the classes even further.

Future work also has to be done by analyzing the influence
of the temporal information. We were still able to achieve
a geometric mean of over 86%. Though, relying on
the temporal information could not only improve the
classification result but also lead to a faster identification
of a fall. The biggest improvement in this direction might
be to identify a fall before any rope is even running through
the device itself.
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