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Abstract  
Brillouin Optical Frequency Domain Analysis (BOFDA) is a powerful and well-established method for static distribut-
ed sensing of temperature and strain.  Recently, we demonstrated a BOFDA system based on convolutional neural net-
work which shortens the measurement time considerably. In this paper, we apply leave-one-out cross validation to eval-
uate the generalization performance and provide an unbiased and reliable machine learning model for a time-efficient 
BOFDA system. 
 
 
 

1 Introduction 
Over the last few years, machine learning and artificial 
neural networks (ANN) in particular, have been used in 
the field of distributed fiber optic sensors (DFOS) to en-
hance their performance, extract insights of the raw data, 
decouple multiple measurands, denoise spectra and re-
duce the measurement time [1-4]. Recently, we published 
an approach based on ANN and specifically convolutional 
neural networks (CNN) to enhance the performance of a 
Brillouin Optical Frequency Domain Analysis (BOFDA) 
sensor in terms of measurement time [3]. 
 
BOFDA is among the well-established sensing techniques 
in DFOS providing high spatially resolved distributed in-
formation (even on cm scale) of temperature or strain 
along ultra-long (up to 100 km) distances [5, 6]. This ren-
ders BOFDA appropriate sensing solution for a wide 
range of applications from structural health monitoring of 
infrastructures like bridges, dams, river embankments to 
long pipeline and subsea cables monitoring. BOFDA 
sensing is characterized by the narrow measurement 
bandwidth which on the one hand provides high signal-to-
noise ratio and reduces the total cost (since no fast elec-
tronics are needed) but on the other hand increases signif-
icantly the measurement time. Our proposed CNN-
assisted BOFDA reduced the measurement time by more 
than nine times [3].   
 
ANNs and CNNs are very powerful algorithms but in 
comparison to conventional algorithms they are very 
prone to overfitting and thus the algorithm’s hyperparam-
eters have to be optimized and cross validation methods 
have to be employed in order to estimate the model’s un-
certainties. Unfortunately, error estimation of such algo-
rithms is not trivial and long training times are expected.  
 
In this paper we demonstrate a reliable and unbiased ap-
proach for error estimation in our newly developed CNN-
assisted BOFDA system and we evaluate the ability of the 
algorithm to not only generalize but also to interpolate on 

new data. To this end, we make use of leave-one-out cross 
validation (LOOCV) approaches [7]. 

2 Methods  

2.1 Experimental setup and data acquisi-
tion 

BOFDA is based on the inelastic scattering between con-
tinuous pump waves and the acoustic waves (acoustic 
phonons) in the medium. The resulted backscattered wave 
has a frequency equal to the frequency of the pump and 
the acoustic wave. The frequency of the acoustic phonons 
is characteristic of the medium and is equal to the so-
called Brillouin frequency shift (BFS). Because the 
backscattered signal is weak, a counter-propagate probe 
(Stokes) wave is injected from the other end of the fiber 
under test (FUT) to stimulate the effect. Both probe and 

pump waves are generated from the same laser diode 

(LD) which emits at 1550 nm. The LD is followed by an 
80/20 fiber splitter. The probe path tunes the BFS so that 
stimulated emission occurs. To this end, a Mach-Zehnder 
modulator (MZM 1) and a signal generator (SG) that 
works in GHz range are employed to suppress the carrier 
and generate two sidebands, where only the upper one 

Figure 1. BOFDA experimental setup.  LD: laser diode; MZM: 
Mach–Zehnder modulator; SG: signal generator; FBG: fiber 
Bragg grating; EDFA: erbium-doped fiber amplifier; VOA: var-
iable optical attenuator; PS: polarization scrambler; FUT: fiber 
under test; PD: photodiode; VNA: vector network analyzer. 
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passes through the fiber Bragg grating filter. In the pump 
path, the signal’s amplitude is modulated in a frequency 
range from 𝑓௠௜௡ to 𝑓௠௔௫ with a step 𝛥𝑓௠ = 𝑓௠௜௡. 𝛥𝑓௠ and 
𝑓௠௔௫ determine the measurement length and the spatial 
resolution, respectively. In this paper the measurement 
length is more than 30 km and the spatial resolution is 25 
m. The polarization scramblers (PS) are employed to re-
duce the polarization fading. The isolator in the probe 
path protects the optical components from the transmitted 
pump signal. The backscattered signal from the FUT ends 
up through a circulator, an erbium-doped fiber amplifiers 
(EDFA) and second FBG (FBG 2) to a photodiode (PD), 
which transforms the optical signal into electrical signal. 
The FBG 2 is used to filter out the backscattered Rayleigh 
component.  The VNA records the systems response 
𝐻(𝑗𝜔, 𝛥𝑓௠), can be transferred to time domain via inverse 
fast Fourier transformations (iFFT) and then converted 
into spatial resolved BGS as follows : 

𝐻(𝑗𝜔, 𝛥𝑓௠)
௜ிி்
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Before iFFT, zero padding can be applied to the system’s 
response to increase the Nyquist frequency and thus the 
spatial sampling [8]. In this paper we increased the 
Nyquist frequency by 16 times and thus 16 BGS corre-
spond to the defined spatial resolution.  
 

 
 
 

2.2 The CNN-based approach 
 
An illustrative comparison of the conventional method 
and the CNN approach to acquire distributed temperature 
information from the raw data is shown in Figure 2. Con-
ventionally with BOFDA, the temperature is estimated by 
the so-called BFS that is obtained by employing Lorentzi-
an curve fitting (LCF) to the BGS. The CNN-assisted 
BOFDA extracts spatial information of temperature di-
rectly from the BGS without the need of any least-square 
fitting algorithm. The performance of the LCF algorithm 
is affected by the signal-to-noise ratio (SNR) and the Bril-
louin frequency scan points. A characteristic LCF fitting 
is depicted in Figure 2a. LCF has to be performed under 
different temperature conditions in order to retrieve the 
temperature coefficient of the FUT via linear fitting. We 
note that the temperature extracted from every 16 BGS 
(corresponding to the defined spatial resolution) is aver-
aged.  
 
The architecture of the CNN-assisted BOFDA is shown in 
Figure 2b. Its input consists of 16 BGS (within the de-
fined spatial resolution) while its output is a single value 
of temperature. The network’s architecture is similar to 
the VGG16 that is usually used for image recognition [9].  
 
 

 
 

Figure 2. a) Illustrative comparison between the conventional and the convolutional neural network (CNN)-based method. b)
CNN architecture. The input consists of a 6 × 16 (Brillouin frequency steps × number of BGS) spectrum while the output is a 
single value for temperature. Convolutional layers employ 3 × 5 filters with a depth of 16 and 32 for the first and second layers, 
respectively. After flattening, two fully connected (FC) layers are used. Batch normalization and ReLU activation functions 
follow every convolutional and FC layer [3].  
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2.3 Data acquisition and error estimation  
 
The measurements are carried out using a temperature 
chamber, in which an optical fiber segment of 200 m is 
placed. This segment is connected to the 30-km fiber 
loop, and we call it fiber-under-test (FUT). We conduct 
measurements in two ways. First, we place the FUT be-
fore the 30-km fiber loop and then after it. This results in 
BGS with high and low SNR since at the end of the 30-
km fiber loop the SNR is reduced significantly. The 
measurements are conducted at set temperatures from 0 
°C to 40 °C with a step of 4 °C. At every temperature, 20 
distributed temperature measurements along the whole 
optical fiber are conducted in total. We note that even 
though we measure along the whole optical fiber only the 
data from the FUT are used in this paper. After the collec-
tion of data, data augmented methods such as horizontal 
flipping are applied. 
 
Error estimation is of great importance in machine learn-
ing to ensure that the models are reliable and generalize 
well. In this paper, we make use of LOOCV, which is an 
iterative method to estimate the model’s performance by 
using each observation for testing and the rest for training 
[7]. The number of iterations is equal to the number of 
observations. As observation we consider either a single 
measurement along the optical fiber or all the measure-
ments corresponding to the same temperature. For the 
sake of simplicity, we call these methods leave-one-
measurement-out cross validation (LOMOCV) and leave-
one-temperature-out cross validation (LOTOCV), respec-
tively. The LOMOCV provides an estimation of the mod-
el to generalize on data out of the training set while 
LOTOCV additionally shows the interpolation ability of 
the model.  

3 Results and discussion  
In this paper, we train CNNs with the hyperparameters 
that are used in [3]. Specifically, the number of epochs is 
100, the batch size is 64 and the learning rate is set to 
0.001. The hyperparameters regarding the structure of the 
CNN are shown in Figure 2. Furthermore, the CNNs are 
trained using the Keras library (v. 2.3.1) [10] and an 
NVIDIA GeForce RTX 2080 Ti 11GB RAM GPU.  
 
As we mentioned in the previous section, the FUT is 
placed at the beginning and at the end of a 30-km fiber 
loop. In Figure 3 we make use of LOTOCV and LO-
MOCV to estimate the system’s performance in terms of 
MAE including a) the whole dataset, b) only data from 
the FUT placed at the beginning of the fiber loop and c) 
only data from the FUT placed at the end of the 30-km 
fiber loop. The green boxes correspond to the CNN model 
while the orange ones to the conventional methods based 
on LCF. The boxplots are described by the boxes and the 
whiskers. The boundaries of the boxes define the inter-
quartile range with the horizontal line within the box rep-
resenting the median value. The boundaries of the lower 

and upper whiskers show the minimum and the maximum 
value. The white dots represent the mean error. 
 

 
Figure 3: MAE estimated by applying LOTOCV and LOMOCV 
on a) the whole dataset, b) only on data from the FUT placed at 
the beginning of the fiber loop and c) only on data from the FUT 
placed at the end of the fiber loop. 

In Figure 3a, where all the data are included, we observe 
that the CNN performs better than the conventional algo-
rithm in any cross validation case with the former per-
forming considerably better when the labels of the test 
data are also included in the training set (LOMOCV). In 
both cases, the CNN model results in a lower error devia-
tion. In contrast to the CNN approach, the LOTOCV and 
LOMOCV of the conventional method do not result in 
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significantly different MAE. This is attributed to the 
simplicity of the conventional model, which assumes only 
linear relations and has inherently low variance.  
 
Figure 3b shows the MAE from the data collected from 
the FUT placed at the beginning of the 30-km fiber loop. 
We observe that while the MAE of the CNN model is lo-
wer than the conventional model when LOMOCV is 
employed, this is not the case when LOTOCV is used. In 
Figure 3c only the MAE from the data collected when the 
FUT is placed at the end of the fiber loop, is shown. In 
this case the CNN outperforms the conventional algo-
rithm with the error difference between the two models 
being higher when LOMOCV is employed. Nevertheless, 
the CNN interpolation ability (LOTOCV) is significantly 
higher than that of the conventional method by almost 1 
°C. Furthermore, the error deviation is lower when CNNs 
are used.  
 
In all plots of Figure 3, we observe that the LOTOCV ap-
proach results in higher errors than the LOMOCV. This is 
expected since the algorithm does not only need to gene-
ralize on new data but to interpolate. The performance of 
the CNN model could be further improved by enhancing 
the temperature resolution in the training set. 
 
Our results show that the CNN model performs 
considerably better on data with low SNR than the con-
ventional method. In BOFDA, the SNR decreases with 
the sensing distance and thus the tolerance against noise 
of the CNNs is of high importance showing the potential 
to extend the measurement length without additional 
components. Furthermore, the SNR depends strongly on 
the measurement time. A high SNR is achieved by narro-
wing the measurement bandwidth and increasing the 
number of averages in the VNA, which both result in lon-
ger measurements. So as we already have shown in [3] 
the CNN shortens the measurement time considerably due 
to its great noise-tolerance. 

4 Conclusions 
 
In this paper, we evaluated the generalization perfor-
mance of a CNN-assisted BOFDA, and we conclude that 
the CNN approach performs significantly better on data 
with low SNR. Our error estimation approach showed that 
the CNN model not only generalizes but also interpolates 
better than the conventional approach. Our results verify 
that the reported CNN-assisted BOFDA paves the way 
towards new applications for BOFDA (e.g. long pipeline 
and subsea cable monitoring), where faster measurement 
time is essential.  

5 Acknowledgments 
CK acknowledges the financial support by the PhD-
program of Bundesanstalt für Materialforschung und -
prüfung (BAM) 
 

6 Literature 
 
[1]  S. Liehr, "Artificial neural networks for distributed 

optical fiber sensing (Invited)," in 2021 Optical Fiber 
Communications Conference and Exhibition (OFC), 
2021, pp. 1-4.  

[2] S. Liehr, L. A. Jäger, C. Karapanagiotis, S. Münzen-
berger, and S. Kowarik, "Real-time dynamic strain 
sensing in optical fibers using artificial neural net-
works," Opt. Express, vol. 27, no. 5, pp. 7405-7425, 
2019. 

[3] C. Karapanagiotis, A. Wosniok, K. Hicke, and K. 
Krebber, "Time-Efficient Convolutional Neural Net-
work-Assisted Brillouin Optical Frequency Domain 
Analysis," Sensors (Basel), vol. 21, no. 8, 2021. 

[4] A. Venketeswaran et al., "Recent Advances in Ma-
chine Learning for Fiber Optic Sensor Applications," 
Advanced Intelligent Systems, vol. 4, no. 1, 2022 

[5] T. Kapa, A. Schreier, and K. Krebber, "A 100-km 
BOFDA Assisted by First-Order Bi-Directional Ra-
man Amplification," (in English), Sensors-Basel, vol. 
19, no. 7, 2019 

[6] R. Bernini, A. Minardo, and L. Zeni, "Distributed 
Sensing at Centimeter-Scale Spatial Resolution by 
BOFDA: Measurements and Signal Processing," IEEE 
Photonics Journal, vol. 4, pp. 48-56, 2012 

[7] Y. L. Zhang and Y. H. Yang, "Cross-validation for 
selecting a model selection procedure," (in English), J 
Econometrics, vol. 187, no. 1, pp. 95-112, 2015 

[8] R. G. Lyons, Understanding digital signal processing, 
Prentice Hall/PTR: Upper Saddle River, NJ, USA, 
2004. 

[9] K. Simonyan and A. Zisserman, "Very deep convolu-
tional networks for large-scale image recognition," 
arXiv preprint arXiv:1409.1556, 2014. 

[10] F. Chollet, "Keras: The python deep learning li-
brary," GitHub Inc.: San Francisco, CA, USA, 2015 

 

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach292




