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Abstract  

Domain or database shift causes performance degradation in machine learning models encountering real-life scenarios. 
However, it is not clear how and to what extent this degradation can be prevented, and which methods are more robust 
against that. In this paper, we compare a workflow based on conventional machine learning methods and deep neural 
networks for condition monitoring with emphasis on domain shift. It is shown that possible domain shifts can be detected 
using visualization techniques at feature level. Also, the conventional method shows superior results in the domain shift 
scenario compared with the deep learning model. Finally, domain adaptation is used to improve the models’ performance.  
 
 
1 Introduction 

 
One of the important applications of machine learning 
(ML) methods is condition monitoring (CM) [1]. Industrial 
sensors and signals, e.g., pressure, vibration, and tempera-
ture measurements, are used to predict possible faults and 
upcoming failures. However, one very important issue in 
this field is the domain (or dataset) shift (DS) problem [2]. 
The performance of ML methods is highly dependent on 
the basic assumption that all data samples are drawn from 
the same distribution. However, in many real-life scenarios 
the mentioned assumption cannot be fulfilled, e.g., a model 
is trained in the lab and applied in the field, causing an out-
of-distribution (OOD) problem. A reason for the DS prob-
lem is changes in the working conditions, e.g., for a ball 
bearing, the temperature or load variations may influence 
the recorded signals. A proper design-of-experiment would 
try to cover the possible variations of the working condi-
tions, however due to practical limitations (time and cost 
of experiments) it is generally not possible to cover all pos-
sible variations and a model must generalize to all relevant 
conditions using a subset of the full data distribution. In 
this study we compare different ML algorithms in a sce-
nario that suffers from the DS problem. 

2 Dataset 

A hydraulic system (HS) dataset from the Center for Mech-
atronics and Automation Technology (ZeMA gGmbH) is 
used in this study [3]. The ZeMA dataset contains record-
ings of 17 sensors and comprises various common faults of 
an HS. Four types of faults are simulated in this dataset, the 
main valve switching performance, internal pump leakage, 
accumulator pre-charge pressure reduction and cooler per-
formance degradation. Visualizing extracted features using 
Principal Component Analysis (PCA) demonstrates that 
the cooler performance causes dominant shifts in the data 
distribution, Figure 1. The selected target in this example 
is detecting the valve switching state from 100% (fully 

functional) to 72% (barely working). To show that the sys-
tem is robust against the cooler performance only data from 
two cooler states (20% and 100%) are used for training and 
3% cooler state (near failure) is used as test data. 

3 Algorithms 

FESR: Conventional ML methods can be formulated as a 
stack of feature extraction (FE), feature selection (FS), and 
classification or regression methods. In this study, we used 
an open-source MATLAB toolbox [1] that performs a 
search to find the best combination of FE, FS, and classifi-
cation or regression methods for a target task. One of the 
limitations of conventional ML is explicit feature engineer-
ing [4], but by using automatic hyperparameter (HP) tuning 
this framework resolved this drawback. Based on the re-
sults of the toolbox search a combination of statistical sig-
nal features [1], feature selection by Pearson correlation 
and partial least squares regression (PLSR) [5] is chosen.  

Figure 1 PCA plot of features from the ZeMA HS dataset. 
All data samples are colored by the cooler performance. 
 

Deep learning methods: To find the best architecture for 
the task, a neural architecture search (NAS) that showed 
superior results and outperforms human-designed net-
works [6] was performed. Convolutional neural networks 
(CNN) are widely used in condition monitoring applica-
tions [7], therefore CNN is the network architecture that is 
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selected for this study. The final model chosen for the de-
fined scenario after training and validating about 500 dif-
ferent networks is a 9-layer CNN; the detailed parameters 
are described in [8]. 

Domain adaptation: Domain adaptation is one of the 
methods that is developed to remedy the DS problem. The 
main idea is to use unlabeled test data or a small subset of 
the labeled version, to adapt a model to a new data distri-
bution (test data) for the same task. In this paper an offset 
calibration with the valve working at 100% and the cooler 
working at 3% is used to compensate the effect of the
change of temperature introduced by the low cooler perfor-
mance at 3% on the valve switching prediction.

Figure 2 Prediction results for valve switching perfor-
mance. For better visibility a jitter in x-direction is applied.

4 Experiments and results
The training, validation, and test results of the FESR model
are reported in Table 1. The test error (RMSE) of the 
model is 2.5% which is also visible in Figure 2 as a posi-
tive offset in the predicted values for the test data. In other 
words, changing the working condition of the HS results in
an offset error of about 2.5%. This situation is similar to
common cross-sensitivity problems in sensor systems. 
The results of the CNN model are also reported in Table 1,
the validation error (random cross-validation) is as low as 
1.15% and does not show signs of overfitting towards the 
training set. However, the test error is 9.75% which is 
about five times larger than for the FESR model. The rea-
son for this shift is that the model is unaware of the test 
data distribution and just fits on the training and validation
data which have a different distribution. Two distinct 
groups are apparent in the prediction of the test data. These 
two groups are also evident at the feature level in Figure 1. 
The group which is closer to the training data in Figure 1,
i.e., has smaller shifts, results in the predictions with 
smaller errors.

Model Validation
RMSE

Test RMSE Test RMSE
after offset calib.

FESR 1.53 2.45 1.58

CNN 1.15 9.74 3.34

Table 1 Error rates of the FESR and CNN models before 
and after offset calibration.

The described offset calibration is used to reduce the offset 
between the training and test data. Using this technique test 
errors decreased for both FESR and CNN models to 1.58%
and 3.34%, respectively. Again, the FESR method shows a 
lower error rate. In fact, the resulting error is close to its 
validation RMSE, indicating that the DS problem is almost 
suppressed completely.

5 Conclusion
DS is a very common problem in real-life applications, es-
pecially in CM scenarios, and often is ignored even in 
widely used datasets [8]. By visualizing the data at differ-
ent levels, it was shown how a DS in a dataset can affect 
the final prediction results degrading the model perfor-
mance, but also how DS might be recognized using simple 
data visualization. In the examined scenario the CNN 
model achieved a lower validation error while the FESR 
method achieved much better results on the test data with 
DS, probably due to its lower complexity and therefore 
higher generalization capability. To remedy the DS prob-
lem recalibration was used as a simple domain adaptation 
technique. The recalibration approach improved the results 
for both models, however, the FESR model still achieved 
superior results.
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