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Kurzfassung

Die genauesten Vakuummassekomparatoren haben eine Auflösung von 0.1 µg bei einem Kilogramm [1], entsprechend
einer relativen Differenz der Masseartefakte von 1×10−10. Schon kleine Unterschiede in der Höhe der Schwerpunkte der
zu vergleichenden Masseartefakte führen zu einer Beeinflussung der Messergebnisse. Im Schwerefeld der Erde verursacht
eine Schwerpunkthöhendifferenz von 1 cm einen Beitrag zur relativen Messunsicherheit von 3.2×10−9. Daher ist es
wichtig die genauen Schwerpunkthöhen der Artefakte zu kennen, sowie sich diese unterscheiden. Im Rahmen dieser Ar-
beit wird eine neuartige Methode vorgestellt, die es ermöglicht die Schwerpunkthöhen von hoch empfindlichen Masseart-
efakten zu bestimmen. Die Methode ermöglicht den Vergleich von Artefakten mit ungewöhnlicher Form, inhomogener
Zusammensetzung oder Hohlmassenormalen mit unsicherer Innengeometrie. Dazu werden die Masseartefakte auf einem
Präzisionskipptisch [2] auf drei 120° zueinander versetzten Kraftmesszellen abgesetzt. Durch die Kraftänderung bei
Veränderung der Winkellage durch den Kipptisch um zwei Achsen, kann daraus resultierend die Schwerpunkthöhe er-
mittelt werden. Unterschiedliche Massenormale mit bekannter Geometrie und Zusammensetzung durchlaufen diesen
Prozess zur Verifizierung der Methode. Letztlich zeigt der Vergleich zwischen theoretisch ermittelten Werten und den
Messergebnissen eine gute Übereinstimmung der Methode.

Abstract

The most precise vacuum mass comparators have a resolution of 0.1 µg, operating at one kilogram [1]. The resolution
represents a relative difference in weight of the artifacts of 1×10−10. Small deviations in the height of the center of
gravity of the mass artifacts lead to a systematic error of the measurement results. For example a difference in the height
of the center of gravity of 1 cm in Earth’s gravitational field causes a relative systematic uncertainty contribution of
3.2×10−9. Therefore, it is important to know the artifacts’ heights of the center of gravity. This paper introduces a novel
approach to measure the height of the center of gravity of high-sensitive mass artifacts. The method allows to compare
the mass of artifacts of unusual shape, inhomogeneous composition or hollow mass standards with uncertain internal
geometry. For the determination, the mass artifacts are placed on three load cells, arranged at an angle of 120°. The load
cells are attached to the base, which stands on a high-precision tilt table [2]. The difference in force with variation of the
inclination angles allows to calculate the height of the center of gravity of the artifacts. To verify the method, various
mass standards of known geometry and composition are measured as described. In the end, the comparison between
theoretically determined values and the measurement results shows a good agreement of the method.

1 Introduction

For mass determinations in the highest range of accuracy
mass comparators with electromagnetic force compensated
(EMFC) weighing cells are state of the art. The base of
a mass comparator is placed on a large weighing stone
to prevent tilts and vibrations. Temperature variations af-
fect the magnetic properties of the magnet system as well
as magnetic materials surrounding construction. Fluctu-
ations of the local gravitational field ([3]) normally have
no influence on the measurement results, since this is ab-
breviated by the counterweight principle. Measurements
are usually performed under high vacuum conditions to

avoid measurement uncertainties due to water layers on the
mass samples or buoyancy. In particular, buoyancy must be
taken into account when mass samples of different materi-
als are used. The International Prototype Kilogram ([4])
(also known as IPK or K) is made of platinum-iridium (Pt-
Ir), while most industrial standards are made of stainless
steel. As part of the redefinition of the International Sys-
tem of Units (SI) in 2019 [5] and the Avogadro project, a
sphere was made of silicon-28 for mass comparisons. In
the comparisons the height of the center of gravity of the
mass samples differ due to the shape of the mass sample.
The center of gravity of cylindrical or spherical mass stan-
dards with homogeneous composition can be easily cal-
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culated geometrically. In the future, mass artifacts with
irregular shape, inhomogeneous composition, or uncertain
interior geometry are also conceivable. For these types of
artifacts, geometric calculation of the center of gravity is
not possible. In this case, it is necessary to gently deter-
mine the center of gravity of the mass sample. In this pa-
per, a device for measuring the center of gravity of mass
samples up to a weight of 3 kg is presented.

2 State of the art

Knowing the center of gravity is important for many things.
For example, the center of gravity of cars [6], especially
high performance vehicles, is important for their stability
on the road. Other examples are trucks [7] or wheelchairs
[8]. Especially in the automotive industry, many methods
for measuring the center of gravity have been established.
The measurement method presented in this paper for mea-
suring the center of gravity involves highly sensitive mass
standards. Dynamic methods are not useful especially for
hollow mass standards.
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1kg Pt-Ir

cylinder

1kg Si28

sphere

1kg steel

button

weight

Figure 1 Different types of mass standards.

The most accurate vacuum mass comparators have a reso-
lution of 0.1 µg for comparisons of 1 kg [1], corresponding
to a detectable relative measurement error of 1×10−10 be-
tween mass artifacts. In the Earth’s gravity field, a differ-
ence in the height of the center of gravity of 1 cm between
two mass samples causes a contribution to the relative mea-
surement uncertainty of 3.2×10−9 when compared.
As described in Section 1, mass samples for comparisons
in mass comparators may have different shapes due to the
material (and density) from which they are made. In Fig-
ure 1, known conventional mass samples are presented (see
also [9]). Because of the use of the silicon sphere, only
mass comparators with three-point support are considered.

3 Theory

The intended goals in measuring the center of gravity are a
quick and easy determination as well as gentle handling
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Figure 2 Experimental setup with different mass samples
placed on the high precision tilt table. The center of grav-
ity measuring device is equipped with the glass sphere on
the three-point support.

during the entire measurement process. Therefore, the
mass artifacts are placed on three load cells using pins with
hemispherical tips (see figures 1, 2, 3 and 4). The load
cells are arranged in 120°, while the pins are arranged with
a pitch radius rP of 15 mm. The three arranged load cells
are attached to a base located on a high-precision tilt table
with a tilt repeatability of less than 0.4 µrad [2]. Carefully
tilting the tilting table about two orthogonal axes changes
the forces on the pins due to the deflection of the center of
gravity, as seen in Figure 3.
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Figure 3 Shift of the force application due to tilt and geo-
metric arrangement of the pins under the sample masses.

The figure shows two states, the initial state where ~g is
parallel to the z-axis (left) and the tilted state where ~g′ is
deflected by Θ relative to the mass sample (right). The load
cells can only measure the force component in measuring
direction along the z-axis, for the tilted case

−→
Fgz. Using

the Equations 1 and the following, the eccentricity of the
load on the pins can be calculated. In the tilted state, the
force application point has shifted on the x-axis by ∆xCG
according to Figure 3. Similar to the observation in 2D,
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the eccentricity can be calculated according to Equations 1
to 9.
The influence of the initial eccentricity is not obstructive
for the measurements since only the change of the forces
application point relative to the load cells over a defined
angle is necessary to determine the center of gravity in z-
axis. The Equations 1 and 2 are modified for the relative
force change in Equations 6 and 7 to determine the relative
motion of the center of gravity to the three pins due to tilt
(see Equation 9 and Figure 3).

xCG = rP · sin(60°) · (FS2−FS1) ·F−1
g (1)

yCG = rP · (sin(30°) · (FS1 +FS2)−FS3) ·F−1
g (2)

with:

Fg =
3

∑
1

FSi (3)

Or described in polar coordinates:

rCG =
√

x2
CG + y2

CG (4)

ϕCG = arctan
(

yCG

xCG

)
(5)

∆xCG = rP · sin(60°) · (∆FS2−∆FS1) ·F−1
g (6)

∆yCG = rP · (sin(30°) · (∆FS1 +∆FS2)−∆FS3) ·F−1
g (7)

∆rCG =
√

∆x2
CG +∆y2

CG (8)

zCG =
∆rCG

sin(∆Θ)
(9)
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Figure 4 Geometric change of pitch diameter by measur-
ing spheres.

When the center of gravity is measured, the result always
refers to the pin tips. For mass samples with flat bottom, no
additional considerations are necessary, but when it comes
to measuring the center of gravity of a sphere, the pitch
diameter of the contact points with the pins changes (see
Figure 4).
If the weighing pan of the vacuum mass comparator uses
the same pitch circle diameter for a three-pin support, the
results are directly transferable. In a cross-check with the
measured values from the sphere diameter and the mea-
surement results, the measured center of gravity for the

sphere must be adjusted with zCG = hmeas +∆zsphere ac-
cording to Equation 12. By applying the first cosine the-
orem in Euclidean geometry Equation 10, the pitch radius
for the sphere rPs from Figure 4 can be calculated accord-
ing to Equation 11. Only with the new pitch radius the
calculation of the height of the geometrical center of grav-
ity of the sphere can be calculated correctly according to
Equation 6 and Equation 7.

α = arccos
(
(2rP)

2−2(rsphere + rpin)
2

−2(rsphere + rpin)2

)
(10)

rPs = rsphere · sin(α/2) (11)

∆zsphere = rsphere− rsphere · cos(α/2) (12)

4 Experiment and results

Before measurements can begin, the glass sphere is used
to calibrate the device. The sphere is self-centering in the
three-point support (see Figure 4), ensuring that the mass
acting in the three pins is equal to 1/3 of the weight of the
sphere msphere. Calibration is performed by ABBA com-
parison of the unloaded and the loaded device. The offset
voltages of the load cells and the calibration factors for the
calculations are determined. The weight of the glass sphere
was determined by comparison with a 1 kg E2 mass stan-
dard. To investigate the geometric center of gravity of the
sphere, the diameter was determined at various points on
the surface using a tactile Abbe comparator (see Table 1).

Property measured value std.-dev.
msphere 925.189 g ±0.127g
dsphere 88.0341 mm ±7.16µm
~g 9.81015772 ms−2 ±1.1×10−7 ms−2

d~g
dh −3.153×10−6 ms−2 ±1×10−8 ms−2

Table 1 Absolute and relative gravitational acceleration
at the measurement site and measured properties of the
glass sphere.

The main experiments were performed for six weight nor-
mals with different weights and shapes (see Figure 6 and
Table 2). The tilt table was prepared to be moved to nine
positions and wait 5 min during the data recording accord-
ing to the predefined angles in mrad:(

Θ

Φ

)
=
(

0 15 0 −15 0 0 0 0 0
0 0 0 0 0 15 0 −15 0

)
The relative force variations indicated by the tilt of the
mass sample 4 are shown in Figure 5. As an example, the
relative force variation can be clearly observed. For each
mass sample from Figure 6, at least three measurement
routines were performed and the samples were replaced
by hand after each measurement routine. Using the above
equations, the geometric height of the center of mass for
each sample was calculated and compared to the measured
geometric shape. The results are presented in Table 3. The
theoretical values differ less than 1 % from the calculated
results from the measured data.
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Figure 5 Sample raw data from one measurement with
sample 4.

Figure 6 Different mass normals used to check the per-
formance of the new device.

No. sample hgeom in mm
1 0.925 kg glass sphere 44.02
2 2 kg steel cylinder 39.15
3 2 kg button weight (E2) 46.40
4 3 kg steel disc 24.50
5 1 kg dumbbell weight 40.50
6 1 kg steel cylinder (F1) 32.00

Table 2 Mass samples for the measurements.

hgeom hmeas std.-dev. rel. dev. abs. dev.
# in mm in mm in mm in % in µm
1 44.02 44.168 0.024 0.34 148
2 39.15 39.279 0.116 0.33 129
3 46.40 46.758 0.061 0.77 358
4 24.50 24.518 0.054 0.07 18
5 40.50 40.751 0.123 0.62 251
6 32.00 31.738 0.142 −0.82 −262

Table 3 Geometrical center of gravity compared to the
measured height of the center of gravity. Standard devia-
tion for n = 3 and k = 1.

5 Conclusion

The new center of gravity meter showed very good agree-
ment with the geometrically determined center of gravity
heights and provided promising results. With a standard
deviation of the center of gravity height of 142 µm for the
1 kg F1 steel cylinder, the uncertainty contribution due
to unknown center of gravity heights of mass samples is
reduced to < 4.5×10−11. For further development, it is
conceivable to mount actuators on the common base of
the three load cells that can tilt the base. This would save
space and costs and the device can be used independently.
However, it should be noted that the tilt actuators must be
calibrated or the tilt must be measured with an independent
inclinometer.
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