
Performance of a Digital Twin platform for tracing quality changes in

fruits
Kunal Singh1, Dr. Reiner Jedermann1
1Institute for Microsensors, Actuators, and Systems (IMSAS), University of Bremen, Germany

Abstract

The Intelligent Container for remote monitoring of refrigerated ocean food transports already included biophysical models

to give better insight into the actual condition of the transported fruits. In this presentation we show, how a Digital Twin

platform was developed to host such models and measure its reaction time between live sensor update and a control action

triggered by the models.

1 Motivation

Sensors are often integrated into physical objects, such as

construction elements, spare parts, or even boxes for fresh

food products. Measured data are feed into simulation

models to predict aging of the part, mechanical stress, or

the expected quality loss of foods [1].

The networking of sensors and models was mostly imple-

mented by manual wiring of the components by proprietary

interfaces. In the recent years, more and more objects have

been represented by digital twins (DTs) on cloud and

server platforms [2]. This trend drives the need to provide

generic solutions to combine sensors and models from dif-

ferent software frameworks in a flexible way.

Models for DTs are no longer processing a set of recorded

data. Instead, they update their prediction on each new sen-

sor reading. This requirement can be best met by a so-

called event-driven architecture.

1.1 Related Work

There are presently various solutions of digital twins avail-

able in the market. Depending on the requirements, the ap-

plications of digital twins differ from industry to industry.

Beside the open-source Kafka-based platform that will be

explained in detail later, following commercial solutions

are common: Microsoft Azure Digital Twin provides a

platform as a service and helps to create twin graphs based

on digital models of real-world environment [5]. It uses

digital twin definition language (DTDL) to define digital

entities representing objects from physical world as twin

models. The relationships in DTDL models are used for

twins to connect into a live graph which can kept up to date

by connecting the twin to an Internet of Things (IOT) hub.

Amazon web service (AWS) also provides its own solution

of digital twin representing digital entities as JSON file

which contains state information, timestamps, and other

useful data. The shadows can be updated, created, and de-

leted from other devices and web clients using Message

Queuing Telemetry Transport (MQTT) reserved topics

and REST APIs [6].

Eclipse Ditto is another open-source digital twin solution

using the eclipse ecosystem. The data from Eclipse ditto

can be also send to the streaming platform Kafka.

Ditto can be applied as middleware to digital twins and IOT

devices. A thing is represented in a JSON format in Eclipse

Ditto. It focuses on back-end services such as providing

APIs abstracting from hardware, or ensuring authorized ac-

cess, for example. The data can be collected from IOT de-

vices using Eclipse Hono and fed to Eclipse Ditto which

can be connected to other web services using APIs [7].

1.2 Definition of Digital Twins

There are presently different definitions and understand-

ings of digital twins in the research field. Grieves, who first

introduced the term digital twin, defined it as “a set of vir-

tual information constructs that fully describes a potential

or actual physical manufactured product from the micro

atomic level to the macro geometrical level […]” from

which “[…] any information that could be obtained from

inspecting a physical manufactured product can be ob-

tained […]” [8]. To simplify the definition further a digital

twin is a virtual representation of a physical object from a

real world. It gets continuously updated from data coming

from physical entities and thus provides us with accurate

information about the state of entities. The data from the

digital twin can be used for early prediction of failures in

industry thus avoiding calamities and loss of property.

1.3 Event Driven Architecture

The implementation of this paper is based on event-driven

architectures. An event is a notable thing like change of a

state of an object or an occurrence. Event driven architec-

tures uses events which happens at regular or irregular in-

tervals to communicate between other applications built

with micro-services so the information can be transferred

quickly to decision makers. In the implementation of the

digital twin discussed further in the paper the data-stream-

ing platform Apache Kafka is used, which implements the

software pattern of event-driven architecture. It reacts on

events coming from sensors of physical entity and passes

the information to the decision maker and takes actions ac-

cordingly. Event driven architectures provides benefits

such as reduced operation cost, more resilient to failures,

and scalability as these events can be transferred to differ-

ent applications and various actions and analysis can be

done. It also increases the responsiveness as the most im-

portant information is dealt meticulously and in much less

time as many operations can be done in parallel.

Different components can be programmed independently,

in various programming languages, running of different

workstations.

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach327

Although it provides many benefits, there are some demer-

its attached to it. While handling larger and complex sys-

tems, it is difficult to keep track of the state of event and

also which application is in control of a particular event

hence the error handling of the events becomes increasing

difficult. It becomes also difficult to control the work flow

as most of events are non-deterministic, since the event-

timing is not exactly known. If one event has to be pro-

cessed before another, the event-timing should be deter-

mined accurately. The unit testing of an event-driven ar-

chitecture system can be performed easily but the scenario

testing becomes complex with larger systems as it becomes

difficult to analyse which events are triggered to get a par-

ticular result and in case of unknown event been released,

the diagnosis of the problem is fairly hard. Sensors publish

their data to a message queue or topic. Models subscribe to

certain topics. Linking between different sub-models and

connection to visualization services is also handled through

topics.

2 Software platform

We present our implementation of a DT software platform

based on the architecture suggested by [3]:

The basic principle of a Digital twin is to replicate the

The basic principle of a digital twin is to replicate the phys-

ical entity and provide necessary information in case of un-

wanted event. The architecture according to [3] provides

access to the sensor and model data in multiple ways, alt-

hough at the costs of redundancy by the parallel use of

three different brokers and data base solutions. Data can be

accessed by standard IoT protocols via MQTT. Immediate

reactions to sensor changes can be triggered by events via

Kafka. Finally, InfluxDB provides easy access to recorded

data via tables or data base queries. Furthermore, the four

different software tools increases the scalability of the dig-

ital twin solution as they can be easily integrated with many

other existing applications. Many devices connected

through Internet send their real time data through MQTT

protocol hence linking such devices with this solution is

fairly simple. Apache Kafka provides connections to many

different applications and provides a throughput of 605

MB/s [11]. The storage of data is of primary importance so

as to analyse it and find any discrepancies which can help

us to predict the failure of a component. InfluxDB provides

the real time storage and can be easily installed on any sys-

tem. It also provides us with many dashboards to visualise

the data. Grafana has capability to analyse and visualise

data using better and efficient dashboards than InfluxDB.

The Message Queuing Telemetry Transport (MQTT) is

used as a common standard to transmit sensor readings to

the platform. It uses publish subscribe mechanism to trans-

fer the information among clients. The real time data from

the sensors are published to a MQTT topic and the data is

sent to the MQTT broker which serves as a bridge between

subscribers and publishers. The MQTT client subscribes to

the topic and receives the data from the broker. MQTT pro-

tocol unlike other internet protocols provides Quality of

Service of message, ensuring the messages are delivered to

the clients without any loss of data.

The open-source Kafka is a distributed streaming plat-

form that streams data using publish subscribe mechanism.

Unlike centralized systems of the past where information

was stored in one location making them prone to data loss

in case of disruption of the system, Kafka uses distributed

environment where either the information or data is broken

into smaller parts and stored in different locations in differ-

ent systems or making copies of entire information in dif-

ferent locations. Both distributed approaches have its own

merits and demerits. If a system crashes some part of data

is lost in the former case. In the latter case even if a system

crash there is no data loss as its copies are available in other

systems, but it increases the redundancy of data and re-

quires more space. Kafka uses a publish and subscribe mes-

saging system to communicate between applications so

that applications can focus more on data and less on data

transmission and sharing. Hence it less complex and easier

to integrate with other applications. In Kafka the messages

are produced to a single topic which can be consumed by

any number of consumers. The consumers can be written

in different programming languages making Kafka hugely

scalable. In the implementation discussed in the paper, the

messages from MQTT client are produced is a Kafka topic

which is consumed by a Kafka consumer which stores the

data in real time series database InfluxDB.

InfluxDB is open-source real-time series database and is

used for long-term storage of time critical information. The

data is stored and read in real time in InfluxDB. It attaches

a timestamp to every incoming data that is ingested to the

database compared to other ordinary relational databases in

which a timestamp needs to be added explicitly. It provides

more speed in storing and processing the real time data. In-

fluxDB can also be used for visualization of incoming data

as it provides different dashboards for better analysing the

data. Querying of data from the database can be done using

Flux query.

Visualization of measured and predicted values is provided

by Grafana, as another open-source tool. It provides us

with various dashboards to analyse the data better. The data

can be ingested into Grafana from database such as In-

fluxDB and is continuously updated with real time values.

Figure 1 Overview of Digital Twin Architecture

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach328

3 Model interfaces

Example models were equipped with interfaces to comply

to the publish/subscribe pattern. They are notified by Kafka

about the availability of new sensor readings. Models can

be written in either Java, Matlab or Python. Due to limita-

tions of the library for Kafka-Matlab integration [4], a new

Java tool was programmed to bridge between Kafka and

Matlab.

3.1 MQTT MATLAB Interface

Models written in Matlab can be integrated with MQTT

protocol. The MQTT toolbox can be installed in Matlab

and it can be connected to the MQTT broker by providing

the authentication. The models can be updated with real

time values by subscribing to the desired MQTT topic. The

data from the Matlab model can be published to another

MQTT topic and can be then send to Apache Kafka which

can be further integrated with different applications. This

interface works best when the source is sending data

through MQTT protocol, while in other cases this approach

may not be feasible as separate toolbox for different proto-

cols may not be available in Matlab [9].

Figure 2 MQTT with MATLAB Interface

3.2 Kafka MATLAB Interface

Models written in Matlab can be integrated with Kafka di-

rectly as well. The Kafka library can be installed in Matlab

which contains Kafka clients, producers and consumers.

Kafka consumer can be used to consume real time data

from Kafka topic which updates the model with real time

values and produces it back to a Kafka topic which can be

further stored in a database and later sent to a visualization

tool. This approach limits the dependency on MQTT pro-

tocol and provides direct linkage of Kafka and Matlab [10].

The Kafka integration with Matlab works fine with basic

operations but there are certain limitations of the library.

There is no parameter to get the latest values from a Kafka

topic so, if the Matlab interface is started after some delay

the model operates on old values. A solution would be to

change the group id of a Kafka consumer every time it

starts but it is not desirable in some cases when we actually

need some offset values of Kafka topic from past.

Figure 3 Kafka with MATLAB Interface

3.3 Kafka Java Interface

The library kafka-clients-2.8.0 provides an interface be-

tween Java and Kafka [12]. As discussed earlier, Kafka is

hugely scalable, and the models written in Java can also be

integrated with Kafka by installing the Kafka Producers

and consumers libraries in Java. Kafka consumer written in

Java consumes the real time values from a Kafka topic and

updates the model accordingly. The desired values from

the Java model can be produced to a Kafka topic which can

further stored in a database or send to other applications.

The integration of models written in different program-

ming languages is what makes Kafka a really powerful tool

in today’s industry environment.

Figure 4 Kafka Java Interface

3.4 Kafka Java MATLAB Queue

To eliminate the issues of the interface discussed in section

3.2 Kafka is integrated with Matlab in a more reliable way,

by implementing a Java-Matlab queue.

Kafka consumer written in Java consumes the real time

values from a Kafka topic and sends it to a Java queue. The

Matlab client continuously keeps a check on the Java queue

and as soon as some data is received in the queue, the data

is extracted by Matlab client, processed by a Matlab model

and sent back to Java queue where the Java client gets the

data and produces it a Kafka topic which can be further sent

to different applications. This implementation provides

better flexibility as all the features of Java Kafka library

can be utilized for data acquisition from Kafka.

 Figure 5 Kafka Java-MATLAB Queue Interface

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach329

4 Performance tests

The flexibility of DT platforms comes at some computa-

tional costs for data base interactions and cloud services.

Especially the response time (RT), until the physical object

receives a control action from the DT has to be considered.

The RT might be slower in comparison with manual direct

software linking of models and sensors. The RT was meas-

ured for different model frameworks and configurations of

the platform. The contribution of each platform component

was analysed separately.

4.1 Methods

The SHT31 temperature and humidity sensor from

Sensiron was used for attaining temperature and humidity

data. Sensor data were either send by hardware sensors,

connected via Raspberry Pi 3 to Ethernet or playback pre-

viously recorded data during transportation of bananas

from Costa Rica to Europe [13].

Tests were carried out on a virtual server (max 4 cores, 8

GByte memory) running on an AMD EPYC-Rome ma-

chine with 3 GHz CPU clock. Connectivity to local PCs

was within the same local network of our University via

Ethernet. Additional tests were done over Wi-Fi.

Each software component added a timestamp, so that time

differences could be recorded for each processing step.

Clock deviations of different PCs had to be compensated.

A series of at least 30 timestamps was recorded for each

test and evaluated.

4.2 Timing Analysis

The time delays of different software components of each

model interface were recorded and analysed. The time de-

lays are in milliseconds and are shown in the form of box-

plots.

A boxplot is used to show the distribution of numerical

data. The minimum value of the data is shown by the left

most point as in Figure 6 below, while the right most point

show the maximum value. The red line in the middle show

the median. The lower quartile that is between Q1 and me-

dian shows almost 25th in the data, while the upper quartile

between median and Q3 in Figure 6 shows 75th percentile.

The interquartile is between Q1 and Q3. The lower and up-

per whiskers represent lower 25% of data values and upper

25% of data values respectively. Outliners in boxplot are

values that is distant from the rest of the data. For demon-

stration outliners were excluded in this implementation.

Figure 6 Parts of Boxplot [14]

Two scenarios were tested for the DT solution:

a) Real time humidity and temperature sensor data

was sent from Raspberry Pi 3 to the MQTT broker

installed in on a virtual server. The sensor data

was then received and processed by the different

model interface and the result was send back to

Raspberry Pi 3 through Kafka.

b) Detailed testing of contribution of each software

components involved in the DT solution was

done. The recorded data set was used in this case

instead of real time data [13]. The data was sent

to MQTT broker from where it was produced to a

Kafka topic. A model written in Java processes

the data and return the result back to Kafka. The

final output from Kafka was sent to a MQTT bro-

ker and the round trip time was recorded along

with the delay from each software components.

4.3 Scenario a) comparing model interfaces

The boxplot below shows the round trip time of the differ-

ent model interfaces. The first measurement was done

without a model interface.

Figure 7 Round Trip Time for different model Interfaces

1) Python Kafka Consumer 2) Kafka Java Interface 3)

Kafka Matlab Interface 4) Kafka Java Matlab Queue

4.4 Scenario b) contribution of software

components

The below figure represents the different timing measure-

ments done in our implementation of different software

components.

Figure 8 Timing Measurements of Software components

1) Data source to MQTT-Kafka bridge 2) Model pro-

cessing Time 3) Kafka-MQTT bridge 4) Round trip time

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach330

The boxplot below shows the time delays each software

components according to Figure 8.

Figure 9 Accumulated time for components running on

PC. From Data source to 1) MQTT-Kafka bridge 2) Java

Model 3) Kafka-MQTT bridge 4) Data sink

The different software components were also ran on the

server for the scenario b) and the result of the timing delays

is shown in the boxplot below.

Figure 10 Accumulated time. Repeated test for all com-

ponents running on the server.

4.5 Green-life prediction

Quality changes of fruits in relation to temperature devia-

tions were predicted by the models [13]. A green-life

model for bananas was programmed in Java and Matlab as

example for such a quality prediction model. Figure 11

shows the continuous loss of green-life over the duration

of the transport, i.e., the remaining timespan until an un-

wanted ripening process starts, accompanied by colour

change from green to yellow.

Figure 11 Green Life and Temperature curve with respect

to Time in hours.

5 Discussion and Conclusion

Our DT sample implementation shows how sensor data can

be integrated with multiple models in a flexible manner

with acceptable network overhead. The timing analysis

done in section 4.2 for scenario a) demonstrated that the

Matlab Interface with Kafka took the maximum time to

process a model and return the result back to Kafka while

the Kafka Java-Matlab Queue was significantly faster

which can be a better alternative. The Kafka Java interface

had a delay of around 30 ms including communication with

the Raspberry Pi.

The testing done for scenario b) concluded that the virtual

server where each software component was running on the

server itself was much faster than the local PC with embed-

ded environment in which MQTT and Kafka Broker was

run on the server. Moreover, the testing with Ethernet was

substantially faster than the Wireless network, which had

an overhead of almost 200ms.

The tests performed with pure server database with fast

Java interface demonstrated that the problem is not the da-

tabase but the different environments on which the tests

were run. Local network added an extra overhead of almost

8ms in comparison to pure server testing of Java interface

while the Wi-Fi gave us an overhead of almost 200ms. The

most timing delays were observed while running the

Matlab model which added an overhead of roughly 800ms.

The tests performed on Raspberry Pi 3 were also signifi-

cantly slower than the server adding a delay of around 35

ms. The initialization and creation of topics and consumer

groups in Kafka also contributes around 1sec to the over-

head in this DT solution. If all initialization is done in ad-

vance, our Kafka based solution provides a fast and flexi-

ble digital twin platform.

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach331

6 Literature

[1] Jedermann, R., Praeger, U., Geyer, M., Lang, W.:

Temperature deviations during transport as a cause for

food losses. In E. Yahia (Ed.), Preventing food losses

and waste to achieve food security and sustainability.

Sawston, UK, BurleighDodds (2019).

doi:10.19103/AS.2019.0053.12

[2] Defraeye, T., Shrivastava, C., Berry, T., Verboven, P.,

Onwude, D., Schudel, S., et al..: Digital twins are

coming: Will we need them in supply chains of fresh

horticultural produce? Trends in Food Science &

Technology, 109, 245-258 (2021).

doi:10.1016/j.tifs.2021.01.025

[3] Kamath, V., Morgan, J., Ali, M. I. Industrial IoT and

Digital Twins for a Smart Factory: An open-source

toolkit for application design and benchmarking. In:

2020 Global Internet of Things Summit (GIoTS), 1-6

(2020) doi:10.1109/GIOTS49054.2020.9119497

[4] Sollander, A., Hosagrahara, A.: MATLAB Interface

for Apache Kafka. https://github.com/mathworks-ref-

arch/matlab-apache-kafka, last accessed 27. Jan. 2022

[5] Overview of Microsoft Azure Digital Twins

https://docs.microsoft.com/en-us/azure/digital-

twins/overview

[6] AWS IOT device shadow service. https://doc

s.aws.amazon.com/iot/latest/developerguide/iot-de-

vice-shadows.html

[7] Eclipse Ditto documentation Overview.

https://www.eclipse.org/ditto/intro-overview.html

[8] M. Grieves and J. Vickers, “Digital Twin: Mitigating

Unpredictable, Undesirable Emergent Behaviour in

Complex Systems,” in Transdisciplinary Perspectives

on Complex Systems: New Findings and Approaches,

F.-J. Kahlen, S. Flumerfelt, and A. Alves, Eds., Cham:

Springer International Publishing; Imprint; Springer,

2017, pp. 85–113.

[9] MQTT in Matlab:

https://github.com/HighVoltages/MQTT-in-

MATLAB

[10] Kafka Matlab Interface:

 https://github.com/mathworks-ref-arch/matlab-

apache-kafka

[11] Benchmarking Apache Kafka. Alok Nikhil, Vinoth

Chandar (2020)

 https://www.confluent.io/blog/kafka-fastest-messag-

ing-system/

[12] Kafka-client library of Java.

 https://jar-download.com/arti-

facts/org.apache.kafka/kafka-clients

[13] Jedermann, R.; Lang, W.: 15 Years of Intelligent Con-

tainer Research. In: Freitag, M.; Kotzab, H.; Megow,

N., (eds.): Dynamics in Logistics: Twenty-Five Years

of Interdisciplinary Logistics Research in Bremen,

Germany, Springer International Publishing, Cham,

2021, pp. 227-247. (doi: 10.1007/978-3-030-88662-

2_11)

[14] Saul McLeod, 2019: Description of Boxplot,

https://www.simplypsychology.org/boxplots.html

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach332

