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Abstract 

In this work, a novel approach is presented to extract physically motivated features for damage detection of gears in 

single-stage gearboxes by an automated order analysis of the instantaneous angular speed. This extraction method was 

applied to measurement data of various magnetoresistive sensors installed in a gearbox test bed and the obtained charac-

teristics were examined in validation scenarios for their susceptibility to external disturbances. The classification results 

were compared to results obtained with an automatic Machine Learning (ML) method both on the data of the magneto-

resistive sensors and an accelerometer. The new method has major advantages, especially with respect to transferability 

to other rotational speeds. 

1 Introduction 

In the context of Industry 4.0 and constantly increasing 

cost pressure, but also in the responsibility to use re-

sources as efficiently as possible, predictive maintenance 

and full utilization of the service life of wear parts of 

complex modern machines are of major importance. Con-

dition monitoring through data-based modelling is a cen-

tral task here [1–3]. 

There are various possibilities to extract potentially rele-

vant information from recorded sensor raw data. Typical-

ly, vibration sensors are used for condition monitoring 

[3]. However, many algorithms that analyse vibration data 

assume knowledge on the current rotational speed of the 

monitored component. In many applications this infor-

mation can only be acquired by additional, e.g. magneto-

resistive (MR) sensors. Therefore, it seems natural to use 

the MR sensor not only for speed measurement but also 

for the condition monitoring itself. This is possible by 

monitoring the effect of damages that cause fluctuations 

(in analogy to vibrations) in the instantaneous angular 

speed signal that can be derived from an MR angular de-

coder. 

This will be demonstrated here using a helical gearbox in 

different damage states. It has been shown that the spec-

trum of the instantaneous angular speed (IAS) is superim-

posed by sidebands at the distance of the rotational fre-

quencies of the connected shafts over the entire frequency 

range [4]. In the event of damage, these sidebands should 

increase in size [4]. However, the behaviour of a single 

sideband is often not very meaningful, so the overall be-

haviour of the sidebands should be investigated using sta-

tistical methods. 

2 Dataset 

The dataset consists of data recorded by five different 

sensors (see Table 1), including four different MR sen-

sors concepts (Sensor A-D) and one accelerometer (Acc.) 

mounted in a single stage gearbox. The MR sensors 

measure the relative angle of the gear shaft with different 

measurement scales. The data of the MR sensors consist 

of two channels whose receivers are phase shifted by a 

quarter period. This results in a sine and cosine signal 

from which the current position, speed and direction of 

rotation can be determined. Further information about the 

employed sensors, data acquisition and preprocessing can 

be found in [5]. The signals from all MR sensors can be 

used to determine the IAS by first calculating the relative 

angle of the gear from the sine and cosine signals. Due to 

the knowledge of the sine and cosine values, the arctan2 

function can be used to directly determine the current po-

sition of the shaft. This extends the tangent function, 

which is limited to the value range ] − 𝜋/2, 𝜋/2[, to the 

interval ] − 𝜋, 𝜋] and thus enables a unequivocally state-

ment about the position of the shaft. The derivation of this 

position signal then leads directly to the IAS signal [5]. 

Table 1 Overview of considered sensors [5] 

Sensor Measuring scale Sampling rate 

A Straight toothed gear, 𝒛𝟑 = 

51 teeth 

100 kHz 

B Spur gear, 𝒛𝟐 = 95 teeth 40 kHz 

C Incremental pole ring, 𝒛𝟏 

= 256 poles 

40 kHz 

D Encoder magnet with north 

and south pole 

40 kHz 

Acc. 51.2 kHz 

Two electric motors were connected to each side of the 

gearbox, one speed controlled, one torque controlled. For 

training data acquisition of the helical gear based on the 

IAS, four different parameters were varied during data 

acquisition (see Table 2). Primarily, artificial damage 

similar to pitting was introduced into a helical gear by 

milling and successively expanded. Furthermore, speed 
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and load of the transmission were varied at six (speed) 

and seven (torque) levels using the connected electric mo-

tors. Finally, the load and direction of rotation were var-

ied in negative and positive directions, resulting in four-

quadrant operation [5]. 

 

Table 2 Parameters varied during data recording [5] 

Parameter Values Interpretation 

Damage 0 No Damage 

1 No Damage, removal and reinstalla-

tion 

2 Small pittings at one tooth flank 

3 Small pittings at three tooth flanks 

4 Bigger pittings at three tooth flanks 

5 Deeper pittings at three tooth flanks 
and over one entire flank 

6 Damage to three teeth over the entire 
flank 

Speed 300, 700, 

1000, 1300, 
1600, 2000 

min-1 

Torque 0, 20, 35, 

55, 70, 85, 
96 

Nm 

Quadrant 1 Motor 1 negative speed, Motor 2 posi-

tive torque 

2 Motor 1 negative speed, Motor 2 neg-

ative torque 

3 Motor 1 positive speed, Motor 2 nega-
tive torque 

4 Motor 1 positive speed, Electric Mo-
tor 2 positive torque 

 

The data set consists of several measurements with differ-

ent durations containing different combinations of the pa-

rameters described above. For data analysis one-second 

segments was extracted from each of these measurements 

resulting in a total of 923 segments. Segments with speed 

1000 min-1 were not taken into account, firstly due to their 

low number and secondly because at this speed only dam-

age class 0 is included in the data set.   

For damage detection, the data set must be further re-

duced, since the damage was introduced into the flank on 

only one side of the teeth, and the damage is therefore on-

ly engaged in the correct combination of rotational direc-

tion and power flow direction. Therefore, only two quad-

rants can be considered: Quadrant 1 and Quadrant 4. 

2.1 Evaluation Scenarios 

Since one of the application goals is to keep the costs and 

thus the number of sensors used as low as possible, the 

sensors are evaluated individually to find the best suitable 

single sensor. Also, the evaluation scenarios were chosen 

to be as realistic as possible and to show robustness as 

well as statistical stability. Four different splits of the da-

taset were used for evaluation. For all evaluation scenari-

os, the goal was to distinguish between undamaged and 

damaged gears, so the segments were labelled according 

to damage class. Classes 0 and 1 were assigned the label 

OK, the remaining classes the label NOK. A second tar-

geting vector, motivated later and included here only for 

completeness, further divides the NOK class into a more 

lightly damaged NOK 1 and a more heavily damaged 

NOK 2 class. 

To minimize variance between test sets and thus avoid 

overfitting due to possible random unbalance of the test 

splits, a five-fold cross-validation (5-fold) was used.  

Since all folds contain similar data in k-fold cross-

validations, it is not possible to determine the influence of 

variable operating parameters like speed and torque on the 

classification result. In reality, these cross influences can 

cause domain shifts resulting in poorer model perfor-

mance [6]. Therefore, two additional leave one group out 

cross validations were performed. First, the dataset was 

divided into folds based on speed to verify speed-

independent detection of damages (Rpm). The second 

evaluation scenario is based on the classification accord-

ing to the damage classes (Dam). Since the gears were 

removed each time in order to introduce further damage 

into the gear, the robustness of the model against a rebuild 

is also shown at the same time. Note, that this evaluation 

scenario results in highly unbalanced training and test da-

ta sets. Either the test fold consists only of OK data or it 

consists only of NOK data, which can easily lead to mis-

interpretation. To take this into account, a fourth evalua-

tion scenario is introduced in which a hold-out evaluation 

generates a single train-test split in which the cycles of 

damage classes 0, 3 and 5 represent the test set and the 

segments from the remaining damage classes represent 

the train set (Hold-Out). 

3 Methods 

3.1 Automated ML-Toolbox 

The raw data from the sensors and the IAS calculated 

from them were first analysed using an automated ML 

toolbox for condition monitoring [2,7]. This demonstrates 

the fully automated approach without explicit considera-

tion of physical knowledge about the current rotational 

speed. The toolbox contains complementary approaches 

for dimensionality reduction in the form of feature extrac-

tion and feature selection as well as a classification via 

Mahalanobis distance following a projection by linear 

discriminant analysis (LDA). For this purpose, methods 

from the categories piecewise approximation, time do-

main transformations, frequency domain transformations, 

time-frequency domain transformations and statistical 

features are used for feature extraction. In addition to a 

simple Pearson correlation, feature selection is based ei-

ther linearly separable (Recursive Feature Elimination 

Support Vector Machines, RFESVM [8]) or linearly non-

separable (RELIEFF [9]) class divisions are used for se-

lection. Pearson correlation between features and target 

vector is used for feature preselection to limit the number 

of features to 500 before applying RFESVM and RE-

LIEFF. In the last step, an LDA is applied and the data is 
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classified based on the Mahalanobis distance (see Fig-

ure 1[2]. 

 

 

Figure 1 Schematic representation of the automated ML 

toolbox approach combining algorithms for feature ex-

traction and feature selection for automated dimensionali-

ty reduction as well as classification 

3.2 Feature Extraction from IAS Spectrum 

To benchmark the explicit use of the additional speed in-

formation provided by MR sensors vs. the vibration sen-

sor and the fully automated approach described above, a 

procedure was implemented that first automatically de-

termined the rotational frequency and the tooth meshing 

frequency based on the MR sensors. Subsequently, the 

power spectral density was calculated, on the basis of 

which an automated order analysis was performed. Both 

the two raw signals and the IAS signal were included in 

the determination of the features. 

The features that are now considered are calculated in a 

window around the MR sensors pole changing frequency 

for the sin and cos signals and for the IAS signal around 

the gear mesh frequency and their respective second to 

fifth harmonic. To statistically examine these windows, 

which extend ±10% of the determined frequency around 

the determined frequency, the statistical parameters root 

mean square (RMS), variance, kurtosis and skewness are 

determined, as well as the maximum value and the mean 

to max ratio. The second source of features is obtained 

from the absolute values of the sidebands at the distance 

of the rotational frequencies of the two shafts connected 

to the gearbox, around the pole changing frequency (sin, 

cos) and the gear meshing frequency (IAS) and their re-

spective second to fifth harmonic, as well as the statistical 

moments of these values as described above. 

Figure 2 shows, using sensor A as an example, which 

points and areas of the power spectral density are evaluat-

ed during feature extraction. The window in which the 

statistical moments are calculated is shown as well as the 

values of the sidebands. The sidebands in the IAS spec-

trum are much more recognizable than in the original sin 

or cos spectrum.  

 

Figure 2 a) Sin Signal Spectrum of sensor A around pole 

changing frequency window from which the statistical 

moments were calculated (black lines), sidebands with 

distance of frequency of input gear (red), sidebands with 

distance of frequency of output gear (yellow); b) identical 

evaluation for the IAS spectrum of sensor A, both at 2000 

min-1, 0 Nm, Damage 0, Quadrant 1 

 

It is therefore to be expected that the features obtained 

from the IAS spectrum contain more information than 

those from the spectra of the sensor raw data. It can also 

be clearly seen that the input shaft sidebands are barely 

visible, while those of the output shaft are clearly visible.  

Principal Component Analysis was used to analyse the 

different influences of the experimental parameters on the 

features calculated as described above. To obtain clearer 

results, only the data of sensor A from the first quadrant 

are evaluated. The results are shown in Figure 3. Along 

the first principal component the rotational speed of the 

examined gear is evident in the physically plausible order. 

Even a larger separation of the 700 min-1 group compared 

to the other three groups is evident, indicating a nearly 

linear correlation between the first principle component 

and speed. 

The second and third principal component represent the 

damage. Colouring the damage cases also shows clearly 

that the NOK data actually comprises two groups: the da-

ta of damage classes 2, 3 and 4 and those of classes 5 and 

6 each form a cluster, while the third recognizable cluster 

contains the OK data. There seems to be significant dif-

ference between the calculated characteristics of the two 

NOK clusters, thus, the scenarios presented in chapter 2.1 

are extended by running them once with the already 

known OK/NOK target and once with an extended target 

that divides the NOK group further into two separate clas-

ses. Based on the results of the principal component anal-

ysis, the NOK1 class contains the damage cases 2, 3 and 4 

and the NOK2 class the damage cases 5 and 6. 
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Figure 3 Variance of features for sensor A and quadrant 1 

only: a) principal component 1 is strongly correlated with 

speed, b) principal components 2&3 (coloured in parame-

ters from Table 2) indicate OK/NOK discrimination 

4 Results 

Initially, the evaluation scenarios described above were 

evaluated with data from quadrant 1 only, i.e., with the 

direction of rotation and power flow fixed. The transfera-

bility to the fourth quadrant will be checked separately at 

a later point of this chapter. In  

Table 3 the performance of the ML toolbox for the indi-

vidual evaluation scenarios and sensors is shown as 

benchmark. In all experiments, the scenarios were carried 

out with the two target labels, i.e. OK/NOK for the two 

class problem (2C) and OK/NOK1/NOK2 as extended 

three class problem (3C) also discriminating the damage 

severity. In general, the 2-class problem is much easier to 

detect than the 3-class problem extended by one damage 

level. Problems with transferability are particularly evi-

dent with the accelerometer when different velocities are 

involved (Rpm 2C and Rpm 3C). 

Not surprisingly, classification with the MR sensor data 

shows major problems discriminating between the two 

NOK subclasses, when a variable parameter is not con-

tained in the training data (Dam 3C, Rpm 3C). Thus, with 

the ML toolbox it is possible to detect if a gear is dam-

aged, but the transferability is severely limited if the de-

gree of damage is to be detected additionally. 

 

Table 3 Evaluation results (Q1 only) with ML toolbox 

(accuracy in %) 

 Acc. A B C D 

5-fold 2C 100 100 100 100 100 

5-fold 3C 97.7 87.5 89.8 97.2 80.1 

Dam 2C 98.9 100 96.0 100 84.1 

Dam 3C 92.6 69.9 71.0 88.6 56.8 

Rpm 2C 79.0 100 96.6 100 97.7 

Rpm 3C 69.3 83.5 77.8 68.8 75.6 

Hold-Out 2C 100 100 100 100 100 

Hold-Out 3C 93.4 75 80.3 86.8 68.4 

 

Since it is assumed that the individual features obtained 

by the automated order analysis, especially the values of 

the sidebands, are highly correlated with each other, they 

are first preprocessed by standardization and principal 

component analysis. In order to be able to compare the 

classification results with the principal components ob-

tained in this way with the ML toolbox, an internal 10-

fold cross validation on the training data, performed itera-

tively with an increasing number of included principal 

components, is applied to determine how many principal 

components are required for ideal class separation. Note, 

that this internal CV does not affect the training-test splits 

applied in the respective evaluation scenarios. 

For the 2-class problem (OK/NOK), similar accuracies to 

the ML toolbox are achieved, as indicated in Table 4. The 

main difference is obtained with the 3-class target 

OK/NOK1/NOK2 for sensor A. This sensor achieves sim-

ilar results with nearly perfect accuracy across all experi-

ments both for the 2-class and the 3-class problem. Rea-

sons for this can be found in the significantly higher sam-

pling rate of sensor A compared to the other sensors, but 

also its location, which is closest to the damage of all sen-

sors. 

 

Table 4 Evaluation scenario (Q1 only) results with IAS 

features (accuracy in %) 

 A B C D 

5-fold 2C 99.4 97.7 100 97.2 

5-fold 3C 99.4 79.6 76.1 79.0 

Dam 2C 99.4 94.9 100 84.7 

Dam 3C 99.4 53.4 79.6 59.7 

Rpm 2C 99.4 94.3 100 97.7 

Rpm 3C 99.4 72.7 84.7 76.7 

Hold-Out 2C 96.8 100 100 99.0 

Hold-Out 3C 98.7 73.7 76.3 67.1 

 

Looking at the confusion matrix of the individual scenari-

os for the 3-class problem for the other sensors (e.g. sen-

sor B, Dam scenario in Figure 4), it is clear that the low 

accuracy in these cases also results mainly from the fail-

ure to distinguish between the two damage subclasses, 

while the distinction between OK and NOK is still possi-

ble. 

Finally, the transferability between quadrants 1 and 4 was 

checked. For this purpose, the evaluation scenarios al-

ready presented were combined with the data from Q1 

and Q4. The classification results can be seen in Table 5 

for the ML toolbox and in Table 6 for the IAS based fea-

ture extraction introduced in this work. For the automated 

order analysis, the data processing chain approach of 

principal component analysis, linear discriminant analysis 

and Mahalanobis distance as described above was chosen. 
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Figure 4 Confusion matrix for sensor B, scenario Dam 3C 

 

As expected, the introduction of additional variability in-

creases the complexity of the classification task. The sig-

nificantly better results obtained for sensor A on the IAS 

signal again indicates that the rotation speed aware ap-

proach successfully reduces this complexity. 

 

Table 5 Evaluation scenario (Q1 & Q4) results with ML 

toolbox (accuracy in %) 

 Acc. A B C D 

5-fold 2C 94.8 99.4 99.4 99.1 95.6 

5-fold 3C 95.4 90.1 88.1 96.2 79.7 

Dam 2C 86.3 96.5 94.2 87.5 91.3 

Dam 3C 86.6 66.9 60.5 75.9 55.5 

Rpm 2C 84 98.6 95.6 74.7 92.2 

Rpm 3C 71.5 79.7 72.7 51.2 75.6 

Hold-Out 2C 95.3 100 100 92.6 100 

Hold-Out 3C 90.5 69.6 70.3 83.8 66.9 

 

Table 6 Evaluation scenario (Q1 & Q4) results with IAS 

features (accuracy in %) 

 A B C D 

5-fold 2C 98.0 98.8 89.0 93.6 

5-fold 3C 99.4 78.2 86.9 77.0 

Dam 2C 92.4 92.2 79.9 72.7 

Dam 3C 90.4 46.8 76.2 50.9 

Rpm 2C 95.6 81.7 82.3 91.0 

Rpm 3C 93.9 73.3 80.8 71.8 

Hold-Out 2C 97.8 99.5 88.1 97.8 

Hold-Out 3C 99.3 64.9 81.1 67.6 

5 Discussion and Conclusion 

A significant advantage of MR sensors for condition mon-

itoring of gears compared to accelerometers was shown, 

since they can explicitly take the rotational speed into ac-

count for damage detection without additional sensor. 

The results suggest two assumptions on which parameters 

the quality of features obtained with automatic order 

analysis might depend. First, the classification results of 

sensor A suggest that its higher sampling rate provides an 

inherent advantage over the other MR sensors. Second, 

the results of sensors B-C suggest that sensors with a 

higher angular resolution of the sensor scale can also pro-

vide more information about the condition of the gear. It 

should be noted that sensor A was also placed closest to 

the damaged gear with its position on the counter-rotating 

gear. Further analysis and experiments are required to de-

termine the importance of sampling rate, position and also 

noise level for the different sensors. 

Similarly, a statistical estimate of the damage detection by 

the sidebands of the IAS spectrum seems possible. How-

ever, it should be further examined which of the charac-

teristics described in chapter 3.2 actually have the greatest 

information content for the classification of the damage 

level. 
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