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Abstract
The detection of microplastics in water currently requires a series of processes (sample collection, purification, and prep-
aration) until a sample can be analyzed in the laboratory. To shorten this process chain, we are investigating whether 
electrical impedance spectroscopy (EIS) enhanced by a classifier based on support vector machines (SVM) can be applied 
to the problem of microplastics detection. Results with suspensions of polypropylene (PP) and polyolefin (PO) in deion-
ized water proved promising: The relative permittivities extracted from measured impedances agree with literature data. 
The subsequent classification of measured impedances by SVM shows that the three classes “no plastic”, “PP”, and “PO” 
can be distinguished securely and that the microplastics concentration can be estimated quantitatively. We conclude that 
machine-learning-enhanced EIS (MLEIS) appears to be a promising approach for in-situ microplastics detection and 
certainly warrants more research activities.

1 Introduction
Microplastics are plastic particles ranging in size from 
1 m to 5 mm [1]. As plastic production has been growing 
by about 8.7 % every year since the 1960s and at the same 
time the plastic is not recycled for a number of reasons, 8 
million metric tons of plastic now enter the oceans every 
year [2, 3]. As a consequence, plastic particles are increas-
ingly found in human food [4] and subsequently in the hu-
man body [3-5]. To be able to control the microplastic con-
centration in the environment and to keep it as low as pos-
sible, one must be able to measure the concentration. The 
state of the art for this is to take water and soil samples and
to analyze them in batches, usually in laboratories.
To date, expensive, time-consuming, and material-inten-
sive measurement methods like Raman spectroscopy or 
FTIR spectroscopy are necessary to investigate water bod-
ies [6]. Easily applicable, cost-effective and yet reliable in-
situ measurement methods are not available in practice [7]. 
Here, we address the application of electrical impedance 
spectroscopy (EIS) as a cheap, fast, and simple measure-
ment method and its suitability for in-situ microplastics de-
tection. 
In some cases, it may suffice to detect the presence of plas-
tics without actual concentration measurement; in other 
cases, it may be necessary to quickly determine the micro-
plastics concentration quantitatively. The first task calls for 
mere classification rather than measurement. A classifica-
tion method known from machine learning and based on 
statistical analysis is the support vector machine (SVM). 
As it can also be used for regression, it was deemed suitable 
for evaluation of EIS data [8]. We therefore investigated 
the performance characteristics of EIS enhanced by SVM 
in the context of in-situ microplastics detection and con-
centration measurement. It is our goal to shed light on the 
merits and drawbacks of such a machine-learning-en-
hanced EIS variant (MLEIS).

2 Measurement setup
We worked with suspensions of two types of plastics, 
polypropylene (PP) and polyolefin (PO), in deionized wa-
ter. The aim was to find out how well the MLEIS approach 
is able to determine (i) the presence of microplastics in the 
sample, (ii) the type of particles present, and (iii) the mi-
croplastics concentration. A cylindrical capacitor was used 
as a measuring cell as shown in Fig. 1 (height: 10 cm; elec-
trode spacing: 0.6 cm; electrode material: aluminum). The 
space between the electrodes was filled with deionized wa-
ter, to which PP or PO particles were added in steps of 1 g. 
The electrodes were contacted via two RG 174 AU coaxial 
cables.

Figure 1. Measurement setup. (a) Scheme of the measur-
ing cell [9]. (b) Photograph of the physical setup.
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Impedance spectra were recorded with Agilent's LCR me-
ter E4980A [10] in a frequency range from 20 Hz to 2 MHz 
(200 measurement points per frequency sweep, measuring 
time per frequency sweep: approx. 1 min). The measure-
ment itself was controlled by a LabView program on a PC, 
which was connected to the LCR meter via a USB cable. 
The apparent impedance |Z| and the impedance phase 
were recorded at each frequency point. The cell was filled
three times with each suspension, or material under test 
(MUT). Each filling was measured five times impedimet-
rically. This resulted in 15 repeated measurements per 
MUT. A completely filled measuring cell held about 49 g 
of water. With the addition of 10 g PP or PO it respectively 
contained 30.3 g and 26.3 g of water to completely fill the 
inter-electrode gap. MATLAB was used for the signal and 
data processing. 

3 Measurement data analysis

3.1 Plausibility of measured impedances 
The plausibility of the obtained impedance spectra was 
checked by determining the relative MUT permittivity r at 
a frequency of 100 kHz. To obtain r, the empty theoretical 
capacitance Ce,t, the empty measured capacitance Ce,m and 
the filled measured capacitance Cf,m of the measuring cell 
are required. The values for Ce,m and Cf,m were determined 
from the respective measured Z [11]:
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It was assumed that the fringing fields at the capacitor ends 
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With each microplastics concentration, the mean permit-
tivity observed in the 15 repeated measurements was com-
puted. The results also serve to validate the EIS setup. Pure 
deionised water has an r of approx. 78.2 in the investigated 
frequency range [12]. Plastics have a relative permittivity 
between 2 and 3 [13]. With increasing plastics content, r
should therefore decrease from the initial value of 80. This 
assumption is confirmed by the experimental findings pre-
sented in Fig. 2. A linear dependence between r and the 
added plastic mass is observed for both PP and PO suspen-
sions.

3.2 Impedance locus as function of PP or 
PO concentration

As usual, the measured impedance spectra are visualized 
as locus in the complex impedance plane (Nyquist-type di-
agram) [14]. Figure 3 presents the mean curves that were 
obtained from the 15 repeated measurements. A certain 
systematic trend is clearly visible. In general, as the
amount of plastic in the mixture increases, the radius of the

Figure 2. Measured changes in relative permittivity r due 
to the addition of plastics (symbols) and linear fits (lines). 
Based on impedances measured at 100 kHz.

Figure 3. Measured mean impedance locus for (a) PP and 
(b) PO in deionized water. The colors indicate the plastic 
mass content in the measuring cell: 0 g (red, bold), 1 g 
(black), 2 g (blue, bold), 3 g (violet), 4 g (green, bold), 5 g 
(yellow), 6 g (turquoise, bold), 7 g (burgundy), 8 g (orange, 
bold), 9 g (light green), and 10 g (gray, bold).

quasi-semicircle of the impedance locus decreases. How-
ever, this trend is not unique for each mixture, which makes 
it difficult to unambiguously assign a plastic concentration 
to each curve. In field environments, the disturbing influ-
ence of, e. g., salinity, temperature fluctuations, mineral 
particles etc. would render the situation even more compli-
cated. One concludes that classical signal processing of the 
impedance locus would not allow one to estimate the plas-
tic concentration, at least not with the practically required 
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insensitivity to influence quantities. This motivates the in-
vestigation of machine learning methods, specifically 
SVM, as signal processing tools for microplastic-depend-
ent impedance spectra.

3.3 Classification and regression results
A first SVM classifier was implemented to determine 
whether microplastics are present and, if so, what type (PP 
or PO). Subsequently, in case the presence of microplastics 
is detected, a regression is performed by a second SVM 
stage to determine the concentration (Fig. 4).
The measured impedance spectra—200 triples of the form 
(|Z|i, i, fi) with fi being the i-th measurement frequency—
serve as input data to the SVM. A Gaussian function was 
used as the SVM kernel and a “one-vs-one” approach was 
selected to enable the discrimination of three classes [6]. 
The box constraint is derived from the cost parameter C
and was set at the default setting of 1, as this prevents over-
fitting [7]. We used the tools “Classification Learner” and 
“Regression Learner” from the Deep Learning Toolbox in 
Matlab 2021a [15].
We followed a two-step strategy to generate the regression 
SVMs. In the first step, the parameter values were the same 
as the ones used by the classification SVM. As this did not 
lead to optimum regression results, the parameter values 
were then modified to improve the situation. Table 1 sum-
marizes the final (optimum) parameter values for the three 
SVMs (classifier, PP content estimator, and PO content es-
timator).
70 % of the measurement data were used to train the SVMs. 
With the remaining 30 % of the data, the generated SVM 
system was tested. A 10-fold cross-validation was also car-
ried out with the training data.
Table 2 lists the obtained results. The correctness of the 
SVM classification, defined as the proportion of correctly 
assigned class memberships (no plastic, PP, and PO), ex-
ceeds 90 %. This is convincing, but of course it also means 
that the classifier is wrong in almost 10 % of the cases. 
Whether or not this is acceptable in practice cannot be de-
cided once and for all—it is a matter of judgement.

Table 1. Parameterization of the three SVMs. C-SVM and 
R-SVM respectively denote classification and regression 
SVMs.

Parameter C-SVM 1 R-SVM 2a R-SVM 2b

Model type Fine 
Gaussian Polynomial Fine 

Gaussian
Cross-vali-
dation 10-fold 10-fold 10-fold

Kernel Gaussian 2. polyno-
mial Gaussian

Box con-
straint level 1 78.9293 681.8977

Kernel 
scale mode Automatic 1 972.764

Epsilon 
mode - 0.007596 0.02625

Multiclass 
method

One-vs-
One - -

Standardize 
data True True False

Table 2. Performance characteristics of the generated 
SVM.

Classification 
correctness / %

R² of regression 
PP PO

Validation 90.05 0.96 0.97
Test 91.49 0.99 1.00

The goodness of the SVM regression, defined as the 
coefficient of determination R² between the true and the 
estimated microplastics content, is above 0.96. Such a 
value is usually considered very good.
The overall high goodness of the classification and esti-
mation results suggests that MLEIS can be a powerful tool. 
At least in the case considered, SVMs help to evaluate EIS 
data that at first glance do not reveal unambiguous 
systematics.

Figure 4. Schematic representation of the SVM cascade. A first SVM classifies the incoming data into three 
classes (subsystem with dashed red frame). This is followed by a regression SVM for each of the two classes 
PP and PO (subsystem with dotted blue frame). The mass of the respective plastic in the water-plastic mixture 
is the output variable.
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4 Conclusion 

With EIS, a possible alternative measurement method is 
available in the field of microplastics detection, which is 
fast and relatively inexpensive compared to the current 
conventional laboratory analysis methods. Measurements 
indicate that it is suitable for the task in principle in that 
impedance spectra show many features varying with the 
microplastics content in aqueous solutions. Whether this 
feature richness can be used to unambiguously estimate 
concentrations from the impedance spectra is not easy to 
decide. Nyquist plots do not reveal such unambiguous re-
lationships at first glance. This is especially true when in-
fluence quantities affect the measurements. 
We could demonstrate that the situation improves when 
machine learning methods are used to process the imped-
ance spectra. The results listed in Table 2 justify our hope 
that EIS as a measurement method in combination with 
SVM-based classification and estimation is suitable for the 
rapid in-situ monitoring of microplastics in water. 
Based on these encouraging results, the effects of influence 
quantities such as water conductivity and temperature and 
the path from static to dynamic MLEIS will be investigated 
in the future. 
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