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Abstract

Schlieren imaging is widely used to visualise local density modulations in optically transparent media, for example to
make fluid flow or ultrasonic waves visible. In common schlieren setups, spatial filtering is applied. This is accomplished
by a 2 f -arrangement consisting of two lenses, where f is the focal length of the used lenses. Between the lenses, a spatial
filter is positioned. The filter requires precise adjustment to obtain images showing the ultrasonic waves. In this paper a
method is described to visualise ultrasonic fields that does not require spatial filtering. To accomplish this, a focussing
macro lens is used. The observed effects are in accordance with the theory of the fractional Fourier transform.

1 Introduction

A common method to visualise local density modulations
in optically transparent media is schlieren imaging. This
enables the visualisation of fluid flow or ultrasonic waves
and the investigation of physical phenomena such as re-
flection and transmission of ultrasonic waves. Moreover,
schlieren imaging is often used to visualise the sound field
of ultrasonic transducers. In practical applications, trans-
ducers are often driven in burst mode. Thus it is of interest
to visualise the propagating waves in time and space. A
pulsed illumination source and the excitation of the ultra-
sonic transducer are synchronised employing the strobo-
scopic principle. By varying the delay between the two
trigger signals, images of different wave positions can be
obtained.
An advantage of schlieren imaging compared to hydro-
phone measurements is that the sound field is not disturbed
by a sensor. Moreover, the measurement time is lower,
as a single schlieren image contains many pixels, whereas
hydrophone measurements require scanning the field by
physically moving the sensor to every single measurement
point.
In the following section a classical schlieren setup is de-
scribed, which requires a spatial filter that needs precise
adjustment. As explained in section 3, ultrasonic waves
can be visualised without applying a filter. This is accom-
plished by varying the position of a lens. The observations
are in accordance with the theory of the fractional Four-
ier transform and mathematically verified by a simulated
signal in section 4. Finally, the procedure to reconstruct a
representation of the phase object from recorded images is
described.

2 Schlieren imaging

Schlieren imaging relies upon the interaction of an ultra-
sonic wave with an electromagnetic wave. An ultrasonic
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Figure 1 Phase shift in plane electromagnetic waves
caused by an ultrasonic wave.

wave with wavelength λUS which propagates through a me-
dium constitutes a local pressure and density modulation.
Due to the piezo-optic effect, also the refractive index of the
medium is modulated. If the medium is illuminated with a
plane electromagnetic wave E0 with wavelength λ0, a spa-
tially dependent phase shift occurs in the wavefronts [1],
see Figure 1. When observing ultrasonic waves, these
phase shifts are usually small and a so-called weak phase
object is obtained. This indicates there are no changes in
amplitude and no deflection in the sense of geometrical op-
tics. The phase object can be described via the transmission
function [2]

t(x,y) = ejϕ(x,y) , (1)

which due to |ϕ| � 1 can be approximated by

t(x,y) = 1+ jϕ(x,y) . (2)

A typical setup for recording schlieren images is shown in
Figure 2. Laser radiation with a wavelength of λ0 = 662nm
passes through a microscope objective creating a divergent
beam. A pinhole is placed at the focus of the microscope
objective to remove disturbances of the wavefront by e.g.
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Figure 2 Typical setup for recording schlieren images.

diffraction at dust particles [3]. Lens L1 collimates the
beam.
The so-called object plane, where an ultrasonic transducer
is located, is thus illuminated by the plane electromagnetic
wave E0. The ultrasonic transducer is placed in a wa-
ter basin (not shown) and emits ultrasonic waves. With
the transmission function (Equation 2), the electromagnetic
field in the object plane EOP(x,y) is described by

EOP(x,y) = E0 · t(x,y) . (3)

The schlieren image is recorded by a digital camera with an
image sensor. An image sensor can only detect the intensity
I(x,y), i. e. the square of the absolute value of the incident
electromagnetic radiation:

I(x,y) = |E(x,y)|2 . (4)

Thus, phase information is lost and phase objects cannot
be observed directly. Therefore, spatial filtering is applied
in common schlieren setups. This is accomplished by a
2 f -arrangement consisting of two additional lenses. Lens
L2 is used to realise a spatial Fourier transform [4]: At a
distance of the focal length f , the Fourier transform of the
object plane can be observed in the so-called Fourier plane:

EFP(kx,ky) = F{EOP(x,y)} (5)

with kx,ky being the wavenumbers with respect to x,y. By
placing optical filters in the Fourier plane, spatial filtering
can be performed [3]. The transmission characteristic of
the filter is described by the filter function FF(kx,ky). An-
other lens L3 is placed at a distance of f from the Fourier
plane, realising the inverse Fourier transform. Accordingly,
the electromagnetic radiation in the image plane equates to

EIP(x,y) = F−1{EFP(kx,ky) ·FF(kx,ky)} (6)

= F−1{F{EOP(x,y)} ·FF(kx,ky)} . (7)

Depending on the used spatial filter, different represent-
ations of the phase object become visible on the image
sensor. An optical high-pass filter is often used, which
blocks wavenumbers near kx,ky = 0. A schlieren image
recorded with a high-pass filter is shown in Figure 3. At
the top of the image, the outline of the transducer is vis-
ible. The transducer Panametrics V303 is excited at its res-
onance frequency of 1 MHz with a sine burst of 10 cycles
and an amplitude of 32 V. As according to Equation 4 the
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Figure 3 Typical schlieren image. The transducer Pa-
nametrics V303 is excited at its resonance frequency of
1 MHz with a sine burst of 10 cycles and an amplitude of
32 V. The values are raw values of a 12-bit image sensor.

image sensor can only observe the intensity I(x,y), sign in-
formation is lost. Hence no differentiation between minima
and maxima of the sound pressure is possible.

3 Fractional Fourier transform

In the schlieren setup deployed at the Measurement Engin-
eering Group, a standard digital camera equipped with a
macro lens is used to record the images (represented by L3
and the image sensor in Figure 2). The macro lens has a
fixed focal length but the focus is adjustable. Adjusting the
focus corresponds to moving L3 on the z-axis.
To be able to apply spatial filtering, the focus is adjusted
to invert the Fourier transform (L3 at distance f to Four-
ier plane, see Figure 2). In the following this setting is
referred to as focussed. Mathematically, applying no filter
corresponds to FF(kx,ky) = 1, so Equation 7 equates to

EIP(x,y) = F−1{F{EOP(x,y)}} (8)
= EOP(x,y) . (9)

As described by Equation 4, the image sensor cannot detect
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Figure 4 Images recorded without spatial filter and different focus settings. Transducer and excitation signal are the
same as in Figure 3. The values represent raw values of a 12-bit image sensor. Note that the size of the observed object
changes with varying focus.

the phase of the incident electromagnetic radiation. Con-
sequently when no spatial filter is applied only a uniformly
lit area can be observed (see Figure 4b). At the top of the
image the outline of the transducer is visible as it is opaque
to visible light. Note that due to non-idealities of the optical
components some interference patterns are visible.
If the focus is adjusted, a non-integer Fourier transform
is performed. This can be described mathematically via
the fractional Fourier transform F a with the order a. It is
defined as [5]

F a{g(y)}=
∫ ∞

−∞
g(y) ·Ka(y′,y)dy (10)

with the transform kernel

Ka(y′,y) = Aα ejπ(cot(α)y′2−2csc(α)y′y+cot(α)y2) (11)

where
Aα =

√
1− j cot(α) (12)

and α is the order a expressed as angle

α = aπ/2 . (13)

For clarity reasons only the one-dimensional formulation in
the propagation direction y of the ultrasonic wave is shown
here. An order of a = 0 corresponds to the original signal

F 0{g(y)}= g(y) , (14)

whereas an order of a = 1 corresponds to the Fourier trans-
form

F 1{g(y)}= F{g(y)} . (15)

F 2 mirrors the original signal

F 2{g(y)}= g(−y) (16)

and F 3 yields the mirrored Fourier transformed signal,
which corresponds to performing an inverse Fourier trans-
form:

F 3{g(y)}= F 1{g(−y)}= F−1{g(y)} . (17)

F 4 yields the original signal, as the fractional Fourier
transform is periodic in a with a periodicity of 4.
If the setup is slightly defocussed (moving L3 nearer to the
Fourier plane), a representation of the phase object can be
observed (Figure 4a). An oscillation is visible with values
lower (blue) and higher (yellow) than the background illu-
mination. This corresponds to performing less than a full
inversion of the Fourier transform, i. e. instead of Equa-
tion 8 the signal in the image plane is given by

EIP(x,y) = F−1+b{F 1{EOP(x,y)}} (18)
= F b{EOP(x,y)} (19)

with b > 0. If the focus is adjusted in the opposite direc-
tion (moving L3 farer away from the Fourier plane), Equa-
tion 19 also applies, but now with b < 0. As depicted in
Figure 4c, a representation of the phase object can also be
observed.
Note that varying the focus also changes the size of the
observed object on the image sensor. It is apparent that
the size of the transducer increases from Figure 4a to c.
A larger size also implies the electromagnetic radiation
extends to a larger area. As the images are all recorded
with equal camera and illumination settings, this is why
the background intensity decreases from Figure 4a to c.

4 Verification with simulated signals

To verify the observations mathematically, a one-dimen-
sional signal is regarded. Figure 5 shows the transmission
function t(y) of a phase object in the object plane, which is
a sine-burst modulated with a Hann window. The sine wave
has a wavelength of λUS ≈ 1.5mm. As no modification
of the amplitude is performed, the absolute value |t(y)| is
constant while the phase arg(t(y)) is oscillating.
To simulate the recording of images with different fo-
cus settings, the transmission object is fractionally Fourier
transformed [6] for orders a= 0.03 and a=−0.03. The ab-
solute value of the obtained signals is depicted in Figure 6.

Sensoren und Messsysteme 2022 ∙ 10. – 11.05.2022 in Nürnberg

ISBN 978-3-8007-5835-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach182



−10 −5 0 5 10
0.95

0.98

1

1.03

1.05

y / mm

|t(
y)

|

−10 −5 0 5 10
−5

−2.5

0

2.5

5
·10−2

y / mm

ar
g(

t(
y)

)/
ra

d

Figure 5 Transmission function t(y) of a phase object in
the object plane.

Compared to Figure 5, the absolute value of 1 is superim-
posed by an oscillation. To be able to draw a comparison to
the phase arg(t(y)), an offset of 1 is added to arg(t(y)) and
additionally depicted in Figure 6. The oscillation of the ab-
solute value of both fractional Fourier transforms is in good
agreement with 1+ arg(t(y)). As expected, the signal with
the negative order a =−0.03 is inverted to the one with the
positive order a = 0.03.

5 Image postprocessing

The images shown in Figure 4 all have a background il-
lumination and show artifacts caused by non-ideal optical
components. To reconstruct the oscillation, the following
procedure is used: First of all, the square root is applied
to the recorded image’s values PUS. This inverts the square
caused by recording the intensity (Equation 4). To reduce
artifacts, a reference image Pref without transmitting an ul-
trasonic wave is recorded and subtracted from the image
with the ultrasonic wave present:

Posc =
√

PUS −
√

Pref . (20)

Moreover, a Gaussian filter is applied to reduce noise. The
resulting image Posc is depicted in Figure 7. A vertical slice
at x = 200 px is shown in Figure 8. As can be observed in
both figures, Posc contains sign information and thus can be
used for further analysis, e.g. for tomographic reconstruc-
tion, if multiple images at different transducer angles are
recorded [7].

6 Conclusion

This work presents a method to record schlieren images
without the need of a spatial filter. Through varying the fo-
cus distance, a fractional Fourier transform of the incident
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Figure 6 Absolute value of the fractional Fourier trans-
forms of the transmission function t(y) shown in Figure 5
compared to the phase arg(t(y)) offset by 1.
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Figure 7 Image Posc postprocessed according to Equa-
tion 20.
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Figure 8 Vertical slice at x = 200 px of the postprocessed
image Posc shown in Figure 7.
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electromagnetic radiation is performed. This shifts inform-
ation from the phase to the absolute value of the electro-
magnetic field, which makes the schlieren object visible to
a camera. Only small changes of the focus are necessary,
which translates to small fractional Fourier transform or-
ders a� 1. Regarding Equation 19, this could allow to
shorten the length of schlieren measurement setups, as the
space required to perform a full optical Fourier transform
and corresponding inverse transform is no longer needed.
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